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Abstract

We present a measurement of the double helicity asymmetry ALL in neutral pion (π0)
production in proton-proton (pp) collisions at the center-of-mass energy of 200 GeV. Since
it was revealed by polarized deep-inelastic scatterings (DIS) that quarks and antiquarks in a
proton carry only one-quarter of the proton spin, it is one of the major interests in the study of
the proton structure to investigate the gluon contribution to the proton spin. In pp collisions,
the gluon can directly participate in the interaction unlike DIS. For this reason, measurements
with pp collision is one of the most promising methods to probe the contribution of the gluon
spin to the proton spin, which is represented as ∆g.

The measurement was performed in the PHENIX experiment with polarized proton beams
in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in
the U.S. The measured kinematical region was 0.5 to 9.0 GeV/c in transverse momentum and
−0.35 to 0.35 in pseudorapidity of π0. In the experiment, photons from π0 decay were detected
by electromagnetic calorimeters located at the central region of the PHENIX detector. The
results of ALL were obtained using the integrated luminosity of 2.3 pb−1 accumulated during
the data taking period in 2005. Average beam polarization was about 50 % for the selected
events. The PHENIX experiment has already published π0 ALL using data of 2003 and 2004.
Compared to these measurements, the statistics in this thesis is about 25 times larger in
terms of figure-of-merit for ALL and the measured pT range is extended.

The measured ALL is consistent with zero within the present experimental uncertainty.
The accuracy of the measurement is dominated by the statistics, and the uncertainty is 0.0017
at 1.0 – 1.5 GeV/c and 0.0257 at 7.0 – 9.0 GeV/c in pT . Our results of ALL are compared
to theoretical calculations with various ∆g inputs and reject the case that the gluon spin is
maximally polarized. Moreover, an interpretation from ALL to ∆g is discussed in this thesis.
An analysis with a simple model unveiled that our measurement constrains the allowed region
of ∆g extracted in the past experiments by half in the measured region of Bjorken x. The
result with the model is consistent with a calculation of a global analysis.

As well as ALL, the single helicity asymmetry AL and the double transverse-spin asymme-
try ATT are also measured and reported in this thesis. Both results are consistent with zero
within uncertainty of the measurement and have agreement with a theoretical calculation.
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Chapter 1

Introduction

1.1 Overview

Since ancient times, we human beings have been interested in what are constituents of ma-
terials and how they form the world. Ancient people guessed that materials consist of a few
elements, such as fire, water and so on. In modern age, scientists thought that the con-
stituents are chemical elements. However, it turned out that many kinds of elements are
comprised of only electron, proton and neutron. Subsequently, experiments utilizing a cos-
mic ray or a particle accelerator unveiled that the proton and the neutron are only a part
of hadrons. Similarly to the case of the chemical elements, the hadrons were expected to
have substructure. The constituents of the hadrons, quarks, were proved by deep inelastic-
scattering experiments. Currently, quarks and leptons are considered as the minimum unit
of materials. Another important question is how the quarks and the leptons form materials.
In the field theory, the interaction between particles is explained by exchange of a particle.
While the atom is formed from the nuclei and the electrons mainly by the electromagnetic
interaction, the main role in formation of the nucleon from the quarks, as well as the nuclei
from the nucleons, is played by the strong interaction which is mediated by the gluon.

A particle has its own features, which include mass, momentum and charge. One of the
most important and basic variable is spin. Based on a symmetry in spacial rotation, total
angular momentum, sum of spin and orbital angular momentum, is conserved. Therefore,
if a particle consists of some constituents, spin of the particle must be reconstructed from
spin and orbital angular momentum of the constituents. The subject of this thesis is how the
proton are formed in terms of the spin. In particular, we focus on the contribution from the
gluon to the proton spin.

Since constituents of the proton were discovered, study of the proton structure was also
that of the constituents, the quark and the gluon. The study was mainly carried out through
electron-proton deep inelastic scattering (ep DIS). In the results, the constituents with electric
charge, which are quarks, turn to be a point particle (so far) and have spin of one-half, while
neutral ones, gluons, have spin of one. At the same time, study about how much each kind
of quark carries momentum of the proton was performed. Consequently, it was revealed that
about half of the proton momentum is carried by the quarks. It was proved that the rest of
the proton momentum is carried by the gluons in cooperation with experiments with proton-
antiproton collisions. In contrast, for the spin, the quarks were expected to carry the most of
the proton spin because of great success of static constituent-quark model. In the model, the
hadrons consist of two or three quarks and no gluons are considered. The model quite well
explains magnetic moment of the hadrons, as well as the masses. However, contrary to the
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expectation, it was unveiled by DIS experiments with polarized electron beam and polarized
proton target that the quarks (and the antiquarks) carry only one-quarter of the proton spin.
Currently, source of the rest of the proton spin is unknown.

The leading contribution in the ep scattering is the electromagnetic interaction. However,
the gluon is neutral in the electromagnetic interaction. For this reason, it is difficult to probe
the gluon in the proton in DIS experiments. One of the promising methods to study the
gluon in the proton is proton-proton (pp) collisions. In the pp collisions, the gluon in a proton
can interact with another quark or gluon in the other proton through the strong interaction.
Hence, the gluon in the proton can be directly probed in pp collisions. The experiment in this
thesis was performed with the PHENIX detector at RHIC (Relativistic Heavy Ion Collider)
at BNL (Brookhaven National Laboratory) in the U.S. RHIC is a unique collider in the world
which can accelerate polarized protons. The data were taken in proton-proton (pp) collisions
with both beams polarized at the center-of-mass energy (

√
s) of 200 GeV. To apply pQCD

(perturbative quantum chromodynamics), which describes the strong interaction at short
distance, for comparison between the data and the theoretical calculation, it is important to
achieve high

√
s. This experiment with

√
s = 200 GeV is expected to satisfy the requirement.

Especially, production of neutral pion (π0) with high transverse momentum (pT ) in pp
collisions is the interest of this thesis. Kinematical range of the measured π0 was 0.5 to
9 GeV/c in pT and −0.35 to +0.35 in pseudorapidity (η). The high pT is also a requirement
of pQCD. Typically, a few GeV/c is required. π0 with high pT is produced in hadronization of
the scattered quark or gluon. The QCD subprocess for π0 production is dominated by gluon-
gluon scatterings at pT < 3 GeV/c and gluon-quark scatterings at 3 < pT < 15 GeV/c, and
contribution of quark-quark scatterings is small in the measured pT range. For this reason,
π0 is an effective probe to investigate the gluon in the proton. As experimental advantages,
π0s are obtained with large statistics and easily identified by reconstructing the invariant
mass from decay photons.

To extract the gluon contribution to the proton spin, the double helicity asymmetry ALL

in π0 production (Aπ0

LL) in pp collisions with both proton beams polarized longitudinally was

measured. Aπ0

LL is defined as

Aπ0

LL ≡ dσ++ − dσ+− − dσ−+ + dσ−−
dσ++ + dσ+− + dσ−+ + dσ−−

∼ P2

[

∆g

g

]2

+ P1

[

∆g

g

]

+ P0. (1.1)

Here dσh1h2 is spin-dependent cross section of π0. h1 and h2 denote helicities of the proton
beams. Denominator of the first equation corresponds to the spin-independent cross section.
The second equation is quite rough approximation. The gluon contribution to the proton
spin is represented by ∆g. Meanwhile, g indicates the unpolarized contribution of the gluon
to the proton momentum. P0, P1 and P2 include other factors, such as the quark contri-
butions, the QCD subprocesses and the hadronization to π0. In the approximation, Aπ0

LL

is written as a quadratic function of ∆g
g . This indicates that π0 is produced via the QCD

subprocesses of gluon-gluon, gluon-quark and quark-quark scatterings (the term of P2, P1

and P0, respectively).
The first measurement of Aπ0

LL was carried out by E704 experiment at FNAL (Fermi
National Accelerator Laboratory) with proton-proton and proton-antiproton collisions at√

s = 19.4 GeV [1]. pT range of the measurement was 1 < pT < 4 GeV/c. But, the
experimental uncertainty was too large to constrain the gluon contribution to the proton spin.
The E704 experiment was followed by the RHIC-PHENIX experiment. PHENIX published
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Aπ0

LL at
√

s = 200 GeV using the data accumulated during 2003 and 2004 [2, 3]. The data
covered 1 to 5 GeV/c in pT . However, the uncertainty was too large to obtain meaningful
constraints.

The data of this thesis was taken in the 2005 run aiming for much improved statistics and
better beam polarization. Integrated luminosity of 2.3 pb−1 was accumulated with average
beam polarization of about 50 %. The integrated luminosity was about 8 times higher than
that of the 2003 and 2004 runs. The polarization was improved by 5 % from the previous
year. In terms of figure-of-merit for ALL, about 25 times higher statistics were obtained in
2005 than the previous years. Owing to the higher statistics, the measured pT range was
extended up to 9 GeV/c.

In this chapter, theoretical basis and current experimental knowledge on PDF are intro-
duced. First, notations and conventions used in this thesis are described in Section 1.2. In
Section 1.3, currently known elementary particles which comprise the world is briefly intro-
duced. The formalism about the structure of the nucleon is described in Section 1.4 and
1.5. Especially in Section 1.5, parton distribution function which is the main topic of this
thesis is described. Theoretical tools to analyze pp collision are introduced in Section 1.6 for
factorization theorem and Section 1.7 for fragmentation function. Following Section 1.8 is
devoted to display the current experimental knowledge in the spin structure in the proton.
Some theoretical predictions for the gluon contribution to the proton spin are introduced
in Section 1.9. In Section 1.10, specific feature in the measurement of π0 with pp collisions
are described. In Section 1.11 and 1.12, experimental procedure to obtain ALL and other
asymmetries are explained.

Following this chapter, the experimental setup is explained in Chapter 2 and the analysis
procedure is described in Chapter 3. In Chapter 4, the results of this thesis appears and
some discussions are presented. Finally, the conclusion is in Chapter 5.

1.2 Notations and Conventions

In this thesis, following notations are adopted. Relativistic 4-vector is described with indices
of Greek alphabet like vµ, where µ takes 0, 1, 2 and 3. vµ is often simplified as v. Classical
3-vector is described as ~v. The metric tensor is described as gµν and defined as

gµν = gµν ≡











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











. (1.2)

The totally antisymmetric tensor (Levi Civita tensor) εµναβ is defined as

ε0123 = −ε0123 = 1. (1.3)

When indices are the same label, summation is taken for the indices. We adopt the natural
units c = h̄ = 1, where c is the light velocity and h̄ is the Plank constant divided by 2π.

1.3 Elementary particles

In our best knowledge, everything in the world consists of quarks and leptons. Presently, six
kinds of quarks and six kinds of leptons are discovered. The kind of the quarks and leptons
are usually named “flavor”. Table 1.1 and 1.2 list the quarks and the leptons, respectively.

6



Name Spin Electric charge Mass (MeV/c2)

d (down) 1/2 −1/3 3 – 7
u (up) 1/2 +2/3 1.5 – 3.0
s (strange) 1/2 −1/3 95±25
c (charm) 1/2 +2/3 1250±90
b (bottom) 1/2 −1/3 4200±70
t (top) 1/2 +2/3 174000±3300

Table 1.1: The quark family [4]. The electric charge is assigned in the unit of electron
charge. The mass is not for “constituent quark”, but “current quark”, which appears in hard
processes such as deep inelastic-scattering described in Section 1.4.2.

Name Spin Electric charge Mass (MeV/c2)

e (electron) 1/2 −1 0.511
νe (electron neutrino) 1/2 0 ∼0
µ (muon) 1/2 −1 106
νµ (muon neutrino) 1/2 0 ∼0
τ (tauon) 1/2 −1 1780
ντ (tau neutrino) 1/2 0 ∼0

Table 1.2: The lepton family [4]. The electric charge is assigned in the unit of electron charge.

Interaction Gauge particle Spin Electric charge Mass (MeV/c2)

Strong interaction g (gluon) 1 0 0
Electromagnetic interaction γ (photon) 1 0 0

Weak interaction W±, Z0 1 ±1, 0 80400, 91200
Gravity graviton 2 0 0

Table 1.3: The interactions and the gauge particles [4]. The electric charge is assigned in
the unit of electron charge. The graviton which carries the gravity is not discovered and the
values in the table is the prediction.
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Another important concept in the particle physics is the interaction between particles.
Currently, four kinds of interactions are known. Table 1.3 lists the interactions and the gauge
particles which mediate the interactions.1 The gauge particles are experimentally observed
except for the graviton. These interactions are related to their own charge; electric charge for
the electromagnetic interaction, for example. The charge is not only the quantum number
but its magnitude also governs strength of the interaction. The quarks are coupled with all
4 interactions, while the leptons are not coupled with the strong interaction since they do
not have color charge which is related to the strong interaction. Gluons interact with each
other through the strong interaction and it results in confinement of the quarks in hadrons.
Similarly, there is the self-coupling in the weak and electromagnetic interaction, which appears
as W± – Z0 and W± – γ interactions. The weak interaction has features that violate the
parity conservation and change flavor of the quarks. The latter characteristic is useful to
select quark flavor in reaction, such as neutrino scattering. The gravity is assumed to be
coupled with energy. However, because strength of the gravity is negligibly small compared
with other interactions, it is ignored in this thesis as in other usual literature.

Particles listed in Table 1.1, 1.2 and 1.3 have their own antiparticles, which have same
characteristic and mass as the corresponding particles except for the charge. Similarly, com-
posite particles from quarks also have the antiparticles; the antiproton for the proton, for
example. Sometimes, the antiparticle is identical to the particle, such as photon. We of-
ten describe an antiparticle as a character with overbar; the proton and the antiproton are
written as p and p̄, for example.

Presently, the electromagnetic, strong and weak interactions, except the gravity, are de-
scribed by the quantum field theory.2 The theory of the electromagnetic interaction is called
QED (quantum electrodynamics). Similarly, the theory for the strong interaction is named
QCD (quantum chromodynamics). The weak interaction is incorporated into QED and the
unified framework is referred to as the electroweak theory. QCD and the electroweak theory
are collectively called the standard model of particle physics.

1.4 Form factor and structure function

In this section and the following sections, structure of the nucleon is discussed.3 Because
the proton and the neutron are doublet in the isospin symmetry, their structures are also
related each other. Therefore, description in this thesis is basically for the proton, following
the usual way in other papers.

1.4.1 Form factor

It is proved by electron-proton (ep) elastic scattering that the proton is not a point particle.
If the proton is a point particle with spin 1

2 , cross section with electron beam and proton
target can be immediately calculated based on QED,

dσpoint

dΩ
=

α2

4E2 sin4 θ
2

E′

E

[

cos2
θ

2
− q2

2M2
p

sin2 θ

2

]

. (1.4)

1Gauge particle is also called gauge boson because its spin is integer. Meanwhile, quarks and leptons have
the spin of half-integer and belong to fermion.

2The study of the quantum theory for the gravity is on going but no conclusive theory is established so far.
3For contents in this section and the following sections about the nucleon structure, several review articles

such as [5–11] are used as reference.
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Solid angle dΩ and scattering angle θ are for the scattered electron beam. E and E′ are energy
of the incident and the scattered electron beam, respectively. E′ is uniquely determined by

the kinematics; E′ = E
[

1 + 2E
Mp

sin2 θ
2

]−1
with the proton mass Mp. q ≡ k−k′ is momentum

transfer, where k and k′ are 4-momentum of the incident and the scattered electron. α = e2

4π
is the coupling constant of the electromagnetic interaction (fine structure constant). The
electron mass is ignored in Equation (1.4).

However, the conjecture of the point-like proton is rejected by measurements. To describe
the finite-size proton, Equation (1.4) is modified by replacing the current for a Dirac particle
as follows;

Jµ = ψ̄γµψ → ψ̄

[

F p
1 (q2)γµ +

χp

2Mp
F p

2 (q2)iσµνqν

]

ψ. (1.5)

γµ is Dirac gamma matrix and σµν is defined as σµν = i
2(γµγν − γνγµ). ψ is Dirac field

with mass Mp. χp ∼ 1.79 is anomalous magnetic moment of the proton and the magnetic
moment is described as (1 + χp) e

2Mp
. In the case of a Dirac particle, χ is equal to 0. The

parameterization of Equation (1.5) is a general form based on the Lorentz invariance and
form factors F p

1 and F p
2 are functions of q2.

Figure 1.1-left displays diagram of ep elastic scattering. Using Equation (1.5), cross
section of ep elastic scattering is calculated. The well-known Rosenbluth’s formula is obtained
on the laboratory frame (rest frame of the target proton).

dσep,ela.

dΩ
=

α2

4E2 sin4 θ
2

E′

E

[

2τGp
M

2
sin2 θ

2
+

Gp
E

2
+ τGp

M
2

1 + τ
cos2

θ

2

]

, (1.6)

The electron mass is again ignored in Equation (1.6). τ is defined as τ = − q2

4Mp
. Gp

E and Gp
M

are so-called electric and magnetic form factor of the proton, respectively, and introduced for
convenience to eliminate the interference term of F p

1 and F p
2 . Relations between F p

1 , F p
2 , Gp

E

and Gp
M are

Gp
E ≡ F p

1 +
χpq

2

4M2
p

F p
2 , Gp

M ≡ F p
1 + χpF

p
2 . (1.7)

Gp
E and Gp

M are closely related to distribution of electric and magnetic moment of the proton.4

Comparing Equation (1.6) with Equation (1.4), Gp
E and Gp

M are constant and equal to 1 if
the proton is a point particle. The measured Gp

E and Gp
M have q2 dependence and Gp

E(q2) ∼
Gp

M
(q2)

1+χp ∼
(

1 − q2

0.71

)−2
is obtained. This result indicates that the proton is not a point

particle. From Gp
E and Gp

M measured, charge distribution of the proton turns out to be an
exponential function of its radius and the mean square radius is obtained to be ∼0.8 fm.5

1.4.2 Structure function

To investigate structure of the proton in more detail, larger momentum transfer squared6

(−q2) is required. However, The scattering with large −q2 results in destructing the proton;

4When |~k − ~k′| ≪ M2
p , Gp

E and Gp
M become Fourier transform of distribution of the electric and the

magnetic moment.
5Form factors for the neutron, Gn

E and Gn
M , have been also measured. The obtained relation is Gn

M (q2)/(1+
χn) ∼ Gp

E(q2), where χn ∼ −1.91. Measured Gn
E is not 0 and implies that the neutron has inner structure

and its constituent has electric charge.
6In the electron scattering, q2 is always negative.
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Figure 1.1: (Left) Diagram of ep elastic scattering. The final state of the target proton is
still single particle described as a Dirac field. (Right) Diagram of ep inelastic scattering. The
target proton is destructed by the scattering.

inelastic scattering. Therefore, formalization of the inelastic scattering is needed. Diagram
of ep inelastic scattering is displayed in Figure 1.1. Because the current in Equation (1.5) is
sandwiched by the Dirac field, it results in the process that both initial and final state are a
proton (and an electron). To describe the inelastic scattering where the final state is no longer
a proton, the calculation needs to be executed without parameterization like Equation (1.5).
At the leading order, cross section of ep scattering is generally represented with the leptonic
tensor Lµν and the hadronic tensor Wµν as follows;

dσep

dE′dΩ
=

α

q4

E′

E
LµνWµν . (1.8)

The lepton part Lµν is computable by QED and the leading term is

Lµν = 2(kµk′ν + k′µkν − (kk′ − m2
e)g

µν) + 2imeε
µναβsα(k − k′)β , (1.9)

where me is the electron mass and sµ is spin vector of the incident electron. If the particle is

an eigenstate of the helicity, the spin vector is defined as sµ = h( |~k|
me

, k0~k

me|~k|
), where h = ±1 is

the helicity. When the particle is relativistic, the spin vector becomes mes
µ ≃ hkµ.

Since it is impossible (at least currently) to calculate the hadronic part Wµν analytically,
it is parameterized as is done in Equation (1.5). One can find out that Lµν of the lepton
part is divided into two parts, symmetric and asymmetric parts in an exchange of µ and ν.
In consideration of this fact, Wµν is divided into symmetric part WS

µν and asymmetric part

WA
µν as

Wµν ≡ WS
µν + WA

µν . (1.10)

The general form of Wµν is written by the combination of the independent physics variables;
4-momentum Pµ and spin vector Sµ of the initial proton, and momentum transfer qµ. In the
rest frame of the proton, Sµ = (0, ~S), where ~S is direction of the proton spin with |~S| = 1.

10



Requiring the conservation of the current and the parity, WS
µν and WA

µν are written as follows;

WS
µν =

(

−gµν +
qµqν

q2

)

W1(ν, q2) +

(

Pµ − Pq

q2
qµ

) (

Pν − Pq

q2
qν

)

W2(ν, q2)

M2
(1.11)

WA
µν = iεµναβqα

[

MSβG1(ν, q2) +
(

(Pq)Sβ − (Sq)P β
) G2(ν, q2)

M

]

. (1.12)

M denotes the proton mass, where “p” in Mp is dropped for simplicity. W1, W2, G1 and
G2 describe structure of the proton in the process of ep inelastic scattering.7 These four
structure functions are functions of two independent variables, ν and q2, where ν is defined
as ν = Pq

M and it is ν = E − E′ on the laboratory frame.
Because the asymmetric part of Equation (1.9) is proportional to the spin vector of the

incident electron, it disappears with unpolarized beam. At the same time, WA
µν for the proton

part also disappears in Equation (1.8). Therefore, cross section with unpolarized beam on
the laboratory frame is calculated to be

dσep

dE′dΩ
=

4E′2α2

Q4

[

2W1 sin2 θ

2
+ W2 cos2

θ

2

]

, (1.13)

where the positive variable Q2 = −q2 is used for convenience and the electron mass is ignored
as usual. Meanwhile, to access G1 and G2, one need to measure spin dependent cross section.
Instead of the cross section itself, difference of the spin dependent cross section is usually
discussed.

d∆σep

dE′dΩ
≡ dσep

→⇐
dE′dΩ

− dσep
→⇒

dE′dΩ
=

4α2

Q2

E′

E

[

M(E + E′ cos θ)G1 − Q2G2

]

, (1.14)

where subscripts of dσ indicates the spin state of the incident electron and proton. → (←)
denotes positive (negative) helicity of the electron, and ⇒ (⇐) indicates that the proton spin
is parallel (antiparallel) to the momentum of the incident electron beam. Because the parity
is conserved in the electromagnetic interaction, other two spin combinations are identical to
those in Equation (1.14); dσep

←⇒ = dσep
→⇐ and dσep

←⇐ = dσep
→⇒. Again, Equation (1.14) is on

the proton rest frame and the electron mass is ignored.
Equation (1.13) and (1.14) make it possible to analyze the inelastic scattering and it

turns out that measurement of the unpolarized cross section and the difference of the spin-
dependent cross section can determine the structure functions W1, W2, G1 and G2. With
large Q2 and ν, the ep scattering can gain information about constituents of the proton. The

limit of Q2, ν → ∞ with Q2

2Mν fixed is called the Bjorken limit and ep scattering at the limit is

called deep inelastic scattering (DIS). We will see clearly in Section 1.5.1 that the ratio Q2

2Mν
is momentum fraction of the constituent to that of the proton. For convenience, following
dimensionless structure functions are often used in literature.8

F1 = MW1, F2 = νW2, g1 = M2νG1, g2 = Mν2G2 (1.15)

As described in the following sections, these functions are directly related to spin-independent
and dependent momentum distribution of the constituents of the proton; quarks and gluons.
Note that F1 and F2 in Equation (1.15) are not relevant to those in Equation (1.5).

7In process where the weak interaction plays a main role, such as neutrino scattering, additional terms are
included in Wµν which violate the parity conservation.

8Actually, the definition of W1, W2, G1 and G2 is different depending on papers. However, F1, F2, g1 and
g2 seems to be universal.
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1.5 Parton distribution function

Quarks are originally introduced to categorize many hadrons observed. Each quark carries
various quantum numbers such as spin, charge, isospin, strangeness, etc., depending on its
flavor. Hadrons are described as combination of quarks and the quantum numbers of hadrons
are calculated from the quantum numbers of quarks forming the hadron. Baryons including
proton and neutron consist of three quarks and mesons including pions and kaons consist of
a pair of quark and antiquark. This simple model (constituent quark model) has been devel-
oped based on flavor-SU(3) symmetry of the light quarks; u, d and s quarks. Incorporating
color-SU(3) symmetry, the model successfully categorizes hadrons, but it is not only for the
categorization. Though the flavor-SU(3) is not an exact symmetry, it is approximately well
satisfied due to small difference in mass of these three quarks. Owing to this feature, the
model successfully explains various physics observables of hadrons, for example, mass and
magnetic moment. However, it should be remarked that the model cannot explain everything
completely.

In the constituent quark model, hadrons are understood by only two or three constituent
quarks. In fact, however, creation and annihilation of quarks and gluons continuously happen
in the hadrons; quarks radiate or absorb gluons, a gluon converts into a pair of quark and
antiquark, and a quark antiquark pair evaporates into a gluon. What is proved by DIS
process is such a dynamic “parton” (quarks and gluon) rather than the static constituent
quarks. Therefore, it is possible that strange quarks, antiquarks or gluons contribute to the
property of the proton which is described by uud quarks in the constituent quark model.
Quarks which carry the quantum numbers of hadrons are named “valence quark”, while
quark and antiquark pairs generated by pair creation are named “sea quark”. The values of
the quark mass in Table 1.1 is for quarks observed in processes such as DIS. In contrast, the
mass of u, d and s quark in the constituent quark model is ∼300, ∼300, ∼500 MeV/c2, which
is interpreted as that including effect of interaction between the quarks.

The discussion is advanced to understand constituent of the proton as parton. In this
section, the parton distribution function is introduced in the model where motion of the
partons in the proton is collinear and the interaction between partons are ignored.9 Then,
the interaction between partons are discussed in Section 1.5.4. To examine the framework on
the basis of the parton and understand the structure of the proton by measurement, several
types of experiments have been carried out, including DIS, e+e− collision and pp collision.
To summarize various kinds of data, it is necessary to perform “global analysis”. In the
following subsections, theoretical tools to describe such physics processes are introduced.
Present experimental knowledge is summarized in Section 1.8.

1.5.1 Unpolarized parton distribution function

When Q2 becomes larger in DIS, the scattering seems to occur between the electron and a
single parton in the proton. Figure 1.2 displays the diagram of ep inelastic scattering with
this view. At the leading order, interaction between partons is ignored. It means that the
parton corresponds to quark which carries electric charge in this approximation. We assume

9Some higher order effects such as higher-twist are discussed in [12].
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that the parton in the proton carries fraction x of the proton momentum.

Proton Parton
Momentum Pµ pµ = xPµ

Transverse momentum PT = 0 pT = 0
Mass M m = xM

(1.16)

pµ and m is 4-momentum and mass of the parton. Transverse momentum is defined as
component of the momentum perpendicular to the direction of the proton’s motion. When
the proton with momentum ~P is moving along the z-axis, transverse momentum of the parton

is pT =
√

p2
x + p2

y. Though it is strange that mass of the parton depends on the momentum

fraction x in Equation (1.16), the discussion here is correctly verified on the system with
infinite proton momentum, where mass of the proton and parton becomes vanishingly small
and therefore pT from such a proton also becomes negligible.

Figure 1.2: Diagram of ep inelastic scattering. It is assumed that the electron beam is
scattered by a single parton in the proton. Interaction between partons is ignored in this
approximation.

The structure function F1 and F2 in Equation (1.15) is related to the momentum distribu-
tion of the parton, q(x), which is referred to as (unpolarized) “parton distribution function”
(PDF). q(x)dx is defined as the probability that quark with flavor q and momentum fraction
x to x+dx is observed in the scattering. Similarly, PDF for the gluon in the proton is defined
as g(x) and PDF for antiquark is q̄(x). By definition, sum of the parton momentum results
in the proton momentum;

∫ 1

0
x

[

∑

q

(

q(x) + q̄(x)
)

+ g(x)

]

dx = 1. (1.17)

In addition, because the quantum number of the proton is carried by uud constituent quarks,
following equations are satisfied;

∫ 1

0
[u(x) − ū(x)] dx = 2,

∫ 1

0

[

d(x) − d̄(x)
]

dx = 1,

∫ 1

0
[s(x) − s̄(x)] dx = 0. (1.18)
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Though it is a little forceful, cross section of scattering between electron and parton in
the proton is written on the proton rest frame as

dσparton

dE′dΩ
=

4E′2α2e2
q

Q4

[

1

M
sin2 θ

2
+

x

ν
cos2

θ

2

]

δ

(

x − Q2

2Mν

)

, (1.19)

where eq is electric charge of the parton in unit of the electron charge and summarized in
Table 1.1. δ(x) is Dirac delta function. One can obtain Equation (1.4) by substituting x = 1
and eq = 1, and integrating Equation (1.19) over E′. Assuming that cross section of ep
scattering is described as superposition of the parton’s cross section Equation (1.19), it is
written as

dσep

dE′dΩ
=

∑

q,q̄

∫ 1

0
q(x)

dσparton

dE′dΩ
dx. (1.20)

Sum is computed for both quarks and antiquarks. One must remember that the reaction is in
the Bjorken limit of Q2, ν → ∞ to describe ep scattering as Equation (1.20). By comparing
Equation (1.20), Equation (1.13) and Equation (1.15), the relation between F1, F2 and q(x)
is obtained.

F1(ν, Q2) =
1

2x
F2(ν, Q2) =

1

2

∑

q,q̄

e2
qq(x), x =

Q2

2Mν
. (1.21)

Because the reaction process is practically elastic scattering between an electron and a parton,
momentum of the initial parton is kinematically determined by ν and Q2 as described in
Equation (1.19) as delta function. By definition, 0 ≤ x ≤ 1 must be satisfied and it is also
assured in Equation (1.21) by the kinematics. In this naive parton model, F1 and F2 are
related each other (Callan-Gross relation) and the relation is confirmed by experiments at
SLAC (the figure is found in [13]). At the same time, the confirmation of the relation means
that the parton is a point particle with spin 1

2 because the relation is satisfied when the
parton is a Dirac particle.

Another important conclusion of Equation (1.21) is a scaling feature of F1 and F2. In
general, F1 and F2 are functions of ν and Q2. However, from Equation (1.21), they are only

a function of x = Q2

2Mν . Therefore, when x is fixed, F1 and F2 is independent of Q2. This
feature is so-called Bjorken scaling and x is named the Bjorken scaling variable or simply
Bjorken x. In fact, the scaling is proved by measurements except for small Q2 dependence as
displayed in Figure 1.6. The violation of the Bjorken scaling does not indicate substructure
of the parton, but higher order effect such as interaction between partons, which is described
in Section 1.5.4.

1.5.2 Polarized parton distribution function

To describe spin-dependent reaction such as Equation (1.14), unpolarized PDF needs to be
extended to spin-dependent PDF. Spin-dependent PDF is defined as qh

H(x), where H and
h denote helicity of the proton and that of the parton in the proton. In similar way to
unpolarized PDF, q+

+(x)dx means the probability that in the scattering one observes the
quark with flavor q, momentum fraction x to x + dx and positive helicity in the proton with
positive helicity. It’s same for the gluon. It is easy to derive equations

q+
+(x) = q−−(x), q−+(x) = q+

−(x) (1.22)

by Lorentz transformation (or one may imagine the proton rest frame). Obviously, unpolar-
ized PDF is obtained by combine spin-dependent PDF as q(x) = q+

+(x) + q−+(x). Instead of
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directly discussing spin-dependent PDF, we often use the difference of spin-dependent PDF;

∆q(x) ≡ q+
+(x) − q−+(x). (1.23)

∆q(x) is named polarized PDF in this thesis. Based on the fact that the proton spin is 1
2 ,

sum of contributions from spin and orbital angular momentum of the parton in the proton
should reconstruct the proton spin.

1

2
=

∫ 1

0

[

1

2

∑

q

(

∆q(x) + ∆q̄(x)
)

+ ∆g(x)

]

dx + L, (1.24)

where L indicates contribution of the orbital angular momentum carried by quarks and gluons.
In ep scattering process, the polarized PDF is related to G1 and G2 in Equation (1.14)

or g1 and g2 in Equation (1.15). Corresponding to Equation (1.19), the difference of the
spin-dependent cross section with static parton target is

d∆σparton

dE′dΩ
≡ dσparton

→←
dE′dΩ

− dσparton
→→

dE′dΩ
=

2αe2
q

MQ2

E′

E

E + E′ cos θ

ν
δ

(

x − Q2

2Mν

)

, (1.25)

where the spin state denoted at the subscripts of dσ is for the electron beam and the parton
target in the similar way to Equation (1.14). The cross section with the proton target of
Equation (1.14) is written as superposition of that with the parton target of Equation (1.25)
as follows.

d∆σep

dE′dΩ
=

∫ 1

0

[

q+
−(x)

dσparton
→→

dE′dΩ
+ q−−(x)

dσparton
→←

dE′dΩ

]

dx

−
∫ 1

0

[

q+
+(x)

dσparton
→→

dE′dΩ
+ q−+(x)

dσparton
→←

dE′dΩ

]

dx

=

∫ 1

0
∆q(x)

d∆σparton

dE′dΩ
dx, (1.26)

where the relation of Equation (1.22) is used. Comparing Equation (1.14), Equation (1.15)
and Equation (1.26), one obtains

g1(ν, Q2) =
1

2

∑

q,q̄

e2
q∆q(x), g2(ν, Q2) = 0, x =

Q2

2Mν
. (1.27)

Again, the momentum fraction x of the parton is fixed kinematically.
Though this naive approximation results in g2 = 0, it is predicted that g2 is also related to

polarized PDF in the second order calculation, where, for example, the interaction between
partons in the proton or initial transverse momentum of the parton are considered. In the
experiment, the measurement by the polarized DIS is insensitive to g2 because the coefficient
of g2 compared to g1 is 2Mx

E+E′ cos θ from Equation (1.14) and it is suppressed by an order of M
E .

In contrast, the spin-dependent cross section with the proton target polarized perpendicular
to the electron spin is sensitive to g2.

1.5.3 Transversity distribution

There is another kind of PDF which is independent of both q(x) and ∆q(x). It is referred to
as transversity distribution and often described as δq(x).10 The transversity is understood in

10In some literature, transversity distribution is denoted as ∆T q(x).
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the parton model when the proton with infinite momentum is polarized transversely (spin of
the proton is perpendicular to the proton momentum) and can be written as

δq(x) ≡ q↑↑(x) − q↓↑(x), (1.28)

where q
↑(↓)
↑ is the probability to observe parton with its spin (anti)parallel to the proton spin.

Significant difference from unpolarized and polarized PDF is that there is no gluon transver-
sity for hadrons with spin one-half because of helicity conservation [14].11 It is thought that
the transversity is related to the transverse single-spin asymmetry AN [15, 16]. Experimen-
tally, several method is suggested and performed to access the transversity, including semi-
inclusive DIS (SIDIS) where more than one particle produced in the reaction is observed in
addition to the scattered electron [15,16] and double spin asymmetry ATT with transversely
polarized pp collision. In the non-relativity, rotations and boosts commute. Therefore, when
partons in the proton are non-relativistic, polarized PDF ∆q(x) and transversity δq(x) be-
come identical because series of rotations and boosts can transform the proton longitudinally
polarized into the transversely polarized proton. However, the partons are not non-relativistic
because contribution of gluons to property of the proton, which represent interaction between
the partons, is not negligible as explained in Section 1.8. Hence ∆q(x) and δq(x) is indepen-
dent. Presently, there is almost no information based on measurements about the transversity.
Only the relation between the transversity and other PDF, so-called the Soffer inequality, is
theoretically known [17];

2|δq(x)| ≤ q(x) + ∆q(x). (1.29)

1.5.4 QCD evolution for PDF (DGLAP equation)

In the sections 1.5.1 and 1.5.2, PDF are introduced at the first order approximation, where
interaction between partons in the proton is ignored. Some results obtained above is based
on the approximation. One is the Bjorken scaling; PDF is only a function of x which is
determined in Equation (1.21) or (1.27). The interaction of partons results in violation of the
Bjorken scaling and Q2 dependence of PDF. Another feature at the first order approximation
is that DIS is described with only charged partons (quarks) and neutral parton (gluon) does
not contribute to the reaction. However, creation and annihilation of partons continuously
happen in the proton and gluons can indirectly affect the DIS process by creating pairs of
quarks and antiquarks. This phenomenon is also implemented by considering the interaction
of partons.

The Q2 dependence of PDF is understood as follows. As Q2 of virtual photon from the
electron beam becomes larger, resolution of the photon becomes better. Hence, single parton
which is seen by the photon with small Q2 is many partons like cloud for the photon with
large Q2. For this reason, the larger-Q2 photon observes smaller-x partons, while the smaller
Q2 photon looks at larger-x partons. Qualitatively, as x increases, PDF becomes larger at
small Q2 and smaller at large Q2. Structure function F2 as a function of Q2 for various x is
measured by many experiments and part of its results are shown in Section 1.8.1.

Transition of PDF is logarithmic in Q2 and equation to describe the Q2 dependence of
PDF can be obtained by QCD, which rules dynamics of the quarks and the gluons. It is called
“evolution equation”, or “DGLAP equation” from the names who derive the equation (Dok-
shitzer, Gribov, Lipatov, Altarelli, Parisi) [18–20]. The evolution equations for unpolarized

11On the helicity basis, the transversity is written as helicity-flip amplitude in a scattering of the parton
and the parent hadron. Because the gluon have spin one, spin one-half hadron can not absorb the spin flip of
the gluon. Therefore, there is no gluon transversity.
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PDF is written as

dq(x, Q2)

d log Q2
=

∫ 1

0
dy dz

[

Pqq(z) q(y, Q2) + Pqg(z) g(y, Q2)
]

δ(x − zy)

dg(x, Q2)

d log Q2
=

∫ 1

0
dy dz





∑

q,q̄

Pgq(z) q(y, Q2) + Pgg(z) g(y, Q2)



 δ(x − zy), (1.30)

where Pij(z)’s are named splitting functions and they govern the evolution of PDF. Figure 1.3
represents the first correction from the constituent quark model, where only the term of Pqq(z)
affects the DIS cross section. In general, Pij(z) is interpreted as probability function that
parent parton converts into daughter parton. z indicates momentum fraction of the daughter
parton compared to the parent parton. For example, Pqq(z) is the probability that a quark
with momentum p radiates a gluon and becomes a quark with momentum zp (see Figure 1.3).
Obviously, to understand all kinds of Pij(z), one need to be away from the constituent quark
model and consider the proton as an aggregation of quarks and gluons interaction each other.
Based on the parton model, the right side of Equation (1.30) simply describes the process
to generate parton with x from parent PDF, q(y) and g(y), following the probability Pij(z).
By definition, x, y and z must satisfy the relation of x = zy, which is represented as delta
function in Equation (1.30). In Equation (1.30), PDF is differentiated by log Q2, not Q2. It
implies large Q2 dependence of PDF in low Q2.

Figure 1.3: The first correction for DIS from
the constituent quark model. The parent
quark loses momentum by radiating gluon
and then scattered by the virtual photon in
the figure. Its contribution is described by
the splitting function Pqq(z) in the parton
model.

Figure 1.4: Diagrams for the leading order of
Pij(z). By calculating these diagrams, one
can obtain the specific function of Pij(z).

The splitting function Pij(z) is evaluated by QCD. Pij(z) is expanded by order of the
coupling constant of the strong interaction, αs.

Pij(z) =

(

αs

2π

)

P
(0)
ij (z) +

(

αs

2π

)2

P
(1)
ij (z) + ... (1.31)
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Diagrams corresponding to the first term of Pij(z) are listed in Figure 1.4. The formulae
are obtained by calculating the diagrams and summarized in Section A.1. Currently, the
splitting function is calculated up to NNLO (next-to-next-to-leading order, an order of α3

s)
for unpolarized PDF (see [21,22] and references given therein).

For polarized PDF, the evolution equation is derived in the same way.

d∆q(x, Q2)

d log Q2
=

∫ 1

0
dy dz

[

∆Pqq(z) ∆q(y, Q2) + ∆Pqg(z) ∆g(y, Q2)
]

δ(x − zy)

d∆g(x, Q2)

d log Q2
=

∫ 1

0
dy dz





∑

q,q̄

∆Pgq(z) ∆q(y, Q2) + ∆Pgg(z) ∆g(y, Q2)



 δ(x − zy).

(1.32)

The spin-dependent splitting function ∆Pij(z) is also expanded by order of αs in the similar
way to the unpolarized case. Presently, ∆Pij(z) is obtained up to NLO (see [23, 24] and
references given therein) and the first-order terms are summarized in Section A.1

1.6 Factorization theorem

In Equation (1.20) and (1.26), DIS process is described as superposition of the interaction
between the virtual photon and a single parton in the proton. The same idea is available
for “hard” pp scattering, where the initial protons are broken by the collision. Comparison
of ep and pp scattering is displayed in Figure 1.5. In ep scattering, the reaction is divided
into two parts. One is selection of a parton in the proton, which is confined in PDF due to
difficulty of the theoretical calculation. The other part is scattering between the parton and
the electron, which one can calculate precisely using perturbative QED.

Figure 1.5: (Left) Diagram of DIS. In SIDIS experiment, one or more hadrons at the final
state are detected. (Right) Diagram of hard pp scattering. Inclusive measurement of hadrons
is often performed. In both SIDIS and pp scattering, the reaction is divided into three parts;
PDF, FF and the partonic cross section.

When hadron at the final state is measured in DIS (SIDIS), it is necessary to formalize
such a process. The hadronization from the scattered parton is “soft” QCD process, where
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pQCD does not work due to low energy scale. Hence, the hadronization process is represented
by fragmentation function (FF) like PDF. FF is described as a function of z (this is irrelevant
to z in Section 1.5.4), which is energy fraction of the hadron detected compared to the parent
parton. We explain the details of FF in Section 1.7. FF is displayed in Figure 1.5 as
Dh

q (z), where q denotes the parent parton and h denotes the hadron observed. Instead of
Equation (1.20), for example, reaction of SIDIS with pion (π) measured in the final state is
written as

dσep→πX =
∑

q,q′

∫ 1

0
dx

∫ 1

0
dz q(x) dσ̂eq→q′X Dπ

q′(z). (1.33)

dσ̂ indicates the cross section at the parton level. The summation is performed for possible
combinations of the initial and the final parton (and anti-parton).

In the same way, reaction of pp can also be factorized as displayed in the right side
of Figure 1.5. Inclusive measurement of pion in pp scattering is divided into three parts;
PDF, FF and partonic cross section. Corresponding to the initial two protons, two PDFs
appear. Unlike ep scattering, gluons in the proton directly participate in the reaction in pp
scattering. The scattering between partons selected following PDF is calculated by pQCD
instead of QED.12 Then, the scattered parton is hadronized following FF. In formula, the
process is written as

dσpp→πX =
∑

f1,f2,f ′

∫

dx1 dx2 dz f1(x1)f2(x2) dσ̂f1f2→f ′X Dπ
f ′(z), (1.34)

where f indicates type of the parton and includes both the quark and the gluon.
It is important to remember that, in ep scattering, this picture is valid at large Q2 where

the virtual photon interacts with a single parton in the proton. Similarly, large Q2 is required
in pp scattering and it is confirmed by production of hadron with high transverse momentum
pT .13 Here, pT is defined as the momentum component perpendicular to momentum of the
initial protons in center-of-mass system. The large Q2 results in small αs, which assures
validity of pQCD.

One of the noteworthy features of the factorization theorem is universality of PDF and
FF. Owing to this feature, PDF or FF obtained by a certain experiment is available for
other experiments and it results in versatility and predictability of the theory. In fact, FF is
measured by e+e− collision which is free from the uncertainty of PDF. Then, DIS or SIDIS
is utilized to determine PDF for quarks in which FF obtained by e+e− collision is used. To
measure gluon PDF, pp collision is effective because gluon appears in the reaction at the
leading order and PDF and FF obtained above is useful in analyzing pp scattering.

In the same way as the unpolarized case, cross section of polarized pp scattering can be
also factorized. For example, when both initial protons have positive helicity in center-of-mass
system of the protons, spin-dependent cross section is written as

dσpp→πX
++ =

∑

f1,f2,f ′

∫

dx1 dx2 dz
[

f1
+
+(x1) f2

+
+(x2) dσ̂f1f2→f ′X

++ + f1
+
+(x1) f2

−
+(x2) dσ̂f1f2→f ′X

+− +

f1
−
+(x1) f2

+
+(x2) dσ̂f1f2→f ′X

−+ + f1
−
+(x1) f2

−
+(x2) dσ̂f1f2→f ′X

−−
]

Dπ
f ′(z). (1.35)

12QED also contributes the process, but the contribution is small due to smaller coupling constant of the
electromagnetic interaction than the strong interaction.

13Empirically, boundary for the validity of the factorization theorem is around 1 GeV/c in pT .
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+ or − at subscripts of dσ denotes the helicity state of the initial protons. Similarly, those
of partonic cross-section dσ̂ are parton’s helicity and the left and right sign is for f1 and f2,
respectively. In the case that a pion is detected in the final state, FF is independent of spin
state of the parent parton because the pion does not have spin and FFs for two spin state of
the parent parton are transformed each other by the Lorentz transformation.

Polarized PDF ∆f is related to appropriate linear combination of the spin-dependent
cross section, which is named polarized cross section.

d∆σpp→πX ≡ 1

4

[

dσpp→πX
++ − dσpp→πX

+− − dσpp→πX
−+ + dσpp→πX

−−
]

=
∑

f1,f2,f ′

∫

dx1 dx2 dz ∆f1(x1) ∆f2(x2) d∆σ̂f1f2→f ′XDπ
f ′(z), (1.36)

where d∆σ̂ is polarized cross section on the parton level and defined as

d∆σ̂f1f2→f ′X ≡ 1

4

[

dσ̂f1f2→f ′X
++ − dσ̂f1f2→f ′X

+− − dσ̂f1f2→f ′X
−+ + dσ̂f1f2→f ′X

−−
]

. (1.37)

To obtain Equation (1.36), the relation of Equation (1.22) is used. In the same way as the
unpolarized case, universality of PDF and FF is again available. Polarized PDF for the quarks
and FF is obtained by polarized DIS and e+e− collision, respectively, while d∆σ̂ is evaluated
based on pQCD. Therefore, polarized pp collision can be an approach to measurement of
polarized gluon PDF ∆g, which DIS experiment is insensitive to.

1.7 Fragmentation function

In DIS or hard pp collision, a single parton with large momentum is knocked out from the
proton. Since the quark or the gluon cannot exist by itself, such a parton is hadronized and
generates a “jet”, which consists of many hadrons with momentum almost parallel to that
of the initial parton. The process of hadronization is described by “fragmentation function”
(FF). FF is often represented as Dh

f (z), where f and h indicate the parent parton and the
hadron after the fragmentation, respectively, and z is energy fraction of the hadron to the
parton. Dh

f (z)dz is defined as the probability density that the hadron h with momentum
of zp to (z + dz)p is generated in the jet originating in the parton f with momentum of p.
When the hadron at the final state has spin, polarized FF is defined in analogy with PDF.
However, in the case of pion with no spin, which is measured in this thesis, FF is independent
of helicity state of the parent parton because FFs for positive and negative helicity of the
parton are transformed each other by the Lorentz transformation. Therefore, we don’t refer
to polarized FF.

As mentioned in Section 1.6, FF has the feature of universality and FF obtained by a
certain measurement is available for other experiments. Based on this feature, e+e− collision
is used as the common tool to research FF because the reaction of e+e− → qq̄ is precisely
calculable by QED and there is no other theoretical uncertainty except for FF. In e+e−

collision with center-of-mass system of the incident electrons, FF is related to cross section
at the first order as follows.

1

σe+e−→X
tot

dσe+e−→hX′

dz
=

∑

q,q̄
e2
qD

h
q (z)

∑

q,q̄
e2
q

, z =
2Eh√

s
=

Eh

Eq
. (1.38)
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σtot is the total cross section of e+e− collision. The summation is executed over possible
quark flavors, while contribution from gluon does not appear at the first order.

√
s, Eh and

Eq are center-of-mass energy, energy of the hadron and energy of the parton, respectively.
Dh

f (z) also depends on Q2 like PDF. Though, in this equation, only FFs for the quarks appear

and the cross section has scaling on z, FF depends on Q2 with higher order QCD, like PDF,
and evolves following DGLAP equation for FF [25–27].

To determine FF, several experiments of e+e− collision and analyses to unify the ex-
perimental data are performed (see [28–32] and references given therein). However, from
Equation (1.38), one can notice that it is difficult to distinguish FFs for each quark flavor
because the right-hand side of Equation (1.38) is always sum of FFs. For example, difference
of d and s quarks is just slightly different mass. For this reason, to extract FF from measured
data, symmetric properties and phenomenological assumptions are often adopted. Charge
conjugation results in

Dh
f = Dh̄

f̄ , (1.39)

and additional isospin symmetry derives for positive pion

Dπ+

u = Dπ+

d̄ , Dπ+

d = Dπ+

ū . (1.40)

In addition to these “reliable” conditions, some constraints are imposed, such as Dπ+

d =

Dπ+

s = Dπ+

s̄ based on symmetry for non-valence quarks [28,32]. Recently, flavor-decomposed
FFs were published [31]. They are obtained utilizing experimental data where two hadrons
are tagged at the final state. For instance, pion measured with D meson tagged lead to pion
FF from c quark, Dπ

c . It is also hard to extract gluon FF in simple measurement with one
hadron tagged. To determine gluon FF, method with three jets tagged is applied. One of
the three jets originates in the gluon radiated by the quark which is the source of other jets.

1.8 Current experimental knowledge on PDF

Many experiments have been performed to explore PDF. To extract PDFs from these huge
data points, it is necessary to fit a certain theoretical model to the data. Such a study is
called “global analysis”. As discussed in Section 1.5.4, PDFs depend on Q2 and the evolution
follows the DGLAP equation, Equation (1.30) or (1.32), obtained by QCD. Therefore, in
global analysis, model of PDF for the analysis is parameterized as a function of Bjorken
x at fiducial Q2, which is usually around a few GeV2. The Q2 dependence of the model
is calculated based on the DGLAP equation. Though the parameterization is different in
analysis groups, the number of the parameters for the fit is roughly 10 to 20. Generally, it is
small for polarized PDF analysis simply because of poor number and precision of experimental
data with polarization.

It is important to note about the isospin symmetry between the proton and the neutron.
The isospin symmetry is well satisfied in current accuracy of measurements. The symmetry
relate PDFs of the neutron to those of the proton;

up(x) = dn(x), dp(x) = un(x), sp(x) = sn(x). (1.41)

p and n at superscript of PDF denote the proton and the neutron, respectively. The similar
relation is obtained for antiquark PDFs and polarized PDFs. To extract structure function
of the neutron, DIS experiment with deuteron target is utilized, assuming a deuteron as a
proton and a neutron which are bound very weekly and almost independent. In addition to
the isospin symmetry, analysis groups adopt some constraints between PDFs to obtain better
efficiency and accuracy.
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1.8.1 Unpolarized PDF

Figure 1.6 displays the structure function F2 of the proton as a function of Q2 for various
x values [33]. In the figure, arbitrary offset is added to F2, though the offset is common in
the same x value. The lines under the data points show results of the global analysis by H1
collaboration [34] and ZEUS collaboration [35]. The data is well represented by the fit and
it indicates validity of the Q2 evolution based on QCD.

Since DIS experiments can measure only F2 which is sum of PDFs, it is hard to separate
F2 into PDFs of each flavor. To disentangle F2, several kinds of experiments are utilized
in addition to DIS with the proton or the deuteron target. DIS with neutrino beam [36] is
useful because charged weak current (W boson coupling) selects quark flavor. For example,
the reaction with negative lepton detected on the final state selects s, d or ū quarks (in light
quarks). Similarly, W boson production in collision of the proton and the antiproton (pp̄) [37]
is used for the separation of u and d quarks. PDF of c quark is tagged by SIDIS with D meson
detected on the final state [38–42]. Lepton pair production (Drell-Yang process) in pp or pd
(proton-deuteron) collision [43, 44] is available to distinguish PDFs of ū and d̄ since lepton
pair is produced by annihilation of the quark and the antiquark. Measurement of inclusive
jet production in pp̄ collision [45–48] contributes to determination of gluon PDF, especially
at higher x region (x >∼ 0.01). DIS measurements with wide Q2 range also contribute to
constraint of gluon PDF through the Q2 evolution at small x region (x <∼ 0.1).

There are several groups extracting PDF from the experimental data [34,35,49–52]. The
results from the groups have reasonable agreement each other. Figure 1.7 displays unpolarized
PDF as a function of Bjorken x at Q2 = 4 GeV2 extracted by CTEQ group [49]. PDFs
are parameterized at Q2 = (1.3)2 GeV2 since the Q2 evolution is unstable at too low Q2.
The band in the figure indicates uncertainty of PDF. The gluon PDF is scaled by 0.2 for
convenience. There is a bump at x ∼ 0.2 for u and d quarks because they are valence quark.
About sea quarks, PDF of ū and d̄ is similar, while that of s̄ and c̄ is suppressed compared to
ū and d̄ because of difference of their masses. Large gluon PDF indicates that large amount
of proton momentum is carried by the gluons.

1.8.2 Polarized PDF

It is difficult to theoretically calculate x dependence of PDF from the first principle. However,
there are some prediction about integral of PDF over x, which is called sum rule. Some sum
rules are often used for global analysis as constraints, as well as for the examination of
Equation (1.24). For example, some trivial sum rules are Equation (1.17) and (1.18), in
addition to Equation (1.24).

The most fundamental sum rule for polarized PDF is derived by Bjorken [53, 54] based
on the isospin symmetry of the nucleon.

∫ 1

0
gp
1(x) − gn

1 (x)dx =
1

6

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

[

1 − αs(Q
2)

π
+ ...

]

,

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

= 1.2695 ± 0.0029 (1.42)

where gp
1 and gn

1 are structure functions defined at Equation (1.15) for the proton and the
neutron, respectively. gV and gA are the vector and the axial-vector weak coupling constants
of the neutron β-decay and determined precisely by experiments [4].14 The term 1− αs

π + ...

14β-decay of the neutron is described by the vector and the axial-vector current as
[

ψ̄p(gV γµ −
gAγµγ5)ψn

][

lepton part
]

, where ψp and ψn is field of the proton and the neutron, respectively. The
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Figure 1.6: Structure function F2 for the proton at various x values as a function of Q2 [33].
Offsets, which is common in the same x value, are added to F2. The results of the global
analysis by H1 [34] and ZEUS collaborations [35] are also displayed in the figure.
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Figure 1.7: Unpolarized PDF at Q2 = 4 GeV2 as a function of Bjorken x obtained by CTEQ
group [49]. For gluon PDF, g(x) × 0.2 is displayed in this figure for convenience.

in the right hand side is from higher order correction of QCD. This Bjorken sum rule is well
verified by measurements [55,56].

By assuming flavor-SU(3) symmetry for the spin-1
2 baryon octet, the β-decay of hyperons

can be described by two parameters, F and D [57,58]. At the same time, certain combinations
of integral of the polarized PDF is related to F and D as follows.

∫ 1

0
[u(x) + ū(x)] −

[

d(x) + d̄(x)
]

dx = F + D =

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

, (1.43)

∫ 1

0
[u(x) + ū(x)] +

[

d(x) + d̄(x)
]

− 2 [s(x) + s̄(x)] dx = 3F − D = 0.586 ± 0.031. (1.44)

It is noticeable that these linear combinations of PDF is independent of Q2 in up to NLO.
Equation (1.43) is identical to the Bjorken sum rule of Equation (1.42). Since the isospin
symmetry is included in the flavor-SU(3) symmetry, the Bjorken sum rule also appears in this
model. The right-hand side of Equation (1.44) is evaluated using measured gA

gV
for hyperon

decays (Λ → p, Ξ → Λ and Σ → n) [4], where F and D is fixed by Equation (1.43). Chi-
square of the fit of 2.1 with degree-of-freedom of 2 is reasonable and it supports validity of
the assumption of the flavor-SU(3) symmetry.

In experiments, instead of measuring d∆σ of Equation (1.36) or Equation (1.26) directly,
ratio to the unpolarized cross section, “asymmetry”, is often measured to reduce normaliza-
tion uncertainty. In DIS experiments, longitudinal double spin asymmetry A|| is an effective

nucleon spin vector is also described by the axial-vector current as 2MpSµ = 〈P, S|ψ̄γµγ5ψ|P, S〉. The fields
of the proton and the neutron are related by the isospin symmetry.
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way to determine g1. A|| is defined as an asymmetry between the cross section with helicities
of the electron and the proton antiparallel and that with parallel helicities.

A|| ≡
dσep

→⇐ − dσep
→⇒

dσep
→⇐ + dσep

→⇒
=

d∆σep

2dσep
, (1.45)

where d∆σep and dσep are defined in Equation (1.13) and (1.14), respectively. By substituting
Equation (1.13) and (1.14), A|| can be written by structure functions. At the Bjorken limit,
A|| is simply proportional to ratio of g1 and F1 as

A|| ∼ D
g1

F1
∼ D

g1

F2
2x(1 + R). (1.46)

D called depolarization factor represents polarization of virtual photon emitted by the elec-
tron beam and is determined kinematically. R is a function of x and Q2, and relates F1 and
F2 [59]. As described in Equation (1.21), R = 0 in the first-order parton model. More detail
is described in Section A.2.

Following pioneering experiments at SLAC [60–63] to measure g1, EMC (European Muon
Collaboration) at CERN measured g1 over 0.01 – 0.7 in Bjorken x with polarized muon
beam and extracted integral of g1 [64, 65]. As described in Equation (1.27), g1 is written in
linear combination of polarized PDFs of the quarks (and the antiquarks). When only three
light-flavor quarks, u, d and s, are taken into account, integral of each polarized PDF of the
quarks are extracted by assuming Equation (1.43) and Equation (1.44) based on the flavor-
SU(3) symmetry. Thus, contribution from the quarks to the proton spin in Equation (1.24)
is evaluated by measurements of g1. The EMC results were interpreted as meaning that
quarks and antiquarks carry only ∼10 % of the proton spin, even though the uncertainty is
large. This conclusion is a contrast to that constituent quarks carry quantum numbers of
hadrons and well describe magnetic moment of hadrons. It is noteworthy that about half of
the proton momentum is carried by gluons.

Many experiments have been performed to confirm the EMC results (see references in
[66–71]). The obtained g1 of the proton at various Bjorken x are displayed in Figure 1.8 as a
function of Q2. In this figure, arbitrary offsets which is common for same x value are added to
g1. Compared with Figure 1.6, precision of the experimental data is poorer and the measured
range of Q2 and x is much smaller than the unpolarized structure function F2. The small
Q2 and x range measured is related to poor knowledge on polarized gluon PDF, in contrast
to the unpolarized case where large kinematical coverage constrain the uncertainty of gluon
PDF. Resulting curve of global analysis by AAC (Asymmetry Analysis Collaboration) [70]
is also displayed in Figure 1.8.15 The contribution of the quarks and the antiquarks to the
proton spin is obtained by the recent analyses [66–71] to be 20 – 35 % at Q2 = 1 GeV2.
Remaining ∼70 % of the proton spin is expected to be carried by gluons or orbital angular
momentum of the parton. But, currently, no definite experimental knowledge on them is
obtained.

In global analysis, some constraints, which is generally tighter than the unpolarized case
due to poor experimental precision, are imposed depending on analysis groups. What is
frequently adopted are sum rules of Equation (1.42), (1.43) and (1.44). Symmetric sea quark
distributions, ū(x) = d̄(x) = s̄(x) = s(x), are also often assumed. Figure 1.9 displays
polarized PDF at Q2 = 1 GeV2 obtained by AAC with above constraints15. Valence u quark

15AAC has already analyzed data including preliminary results of ALL in π0 production in this thesis [70]
and the resulting curve is displayed in Figure 1.8. However, polarized PDFs in Figure 1.9 are produced without
our data [72].

25



0.01

0.1

1

10

0.7 1 10 100 200

Q2[GeV2]

E130

E143

E155

EMC

SMC

HERMES

g
1
p
(x

,Q
2
) 

+
C

x = 0.75

x = 0.66

x = 0.55

x = 0.50

x = 0.35

x = 0.25

x = 0.175

x = 0.125

x = 0.08

x = 0.025

x = 0.007

x = 0.05

x = 0.45

Figure 1.8: g1 at various Bjorken x region as a function of Q2. Curve displays result of
global analysis by [70]. Offsets which is common for the same x range are added to g1 for
convenience.

26



Bjorken x
-310 -210 -110 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

vu∆x

2
 = (1 GeV)2Q

Bjorken x
-310 -210 -110 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

vd∆x

Bjorken x
-310 -210 -110 1

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

-0

0.005

0.01

q∆x

Bjorken x
-310 -210 -110 1

-1

-0.5

0

0.5

1

1.5

g∆x

Figure 1.9: Polarized PDF at Q2 = 1 GeV2 obtained by global analysis by AAC15. uv

(dv) indicates valence u (d) quark. The distributions of the sea quarks and the strange
quark are labeled as ∆q̄. The band represents uncertainty of polarized PDF. The sum rules
of Equation (1.42), (1.43) and (1.44) are used in the fitting, and assumption of symmetric
sea-quark distributions is applied.

aligns parallel to spin of the proton, while polarization of valence d quark and the sea quarks
are slightly negative. Since most data are currently obtained by DIS experiments, there is
almost no capability to determine polarized gluon PDF as huge uncertainty is assigned to it
in Figure 1.9.

Other processes such as SIDIS and pp collisions are available to constrain ∆g. In such ex-
periments, asymmetry is usually measured. In the case of pp collisions, especially for inclusive
π0 production, the detail is described in Section 1.10. Currently, SMC [73], HERMES [74]
and COMPASS [75] collaborations published the results of ∆g based on SIDIS. Their results
have moderate precision and are consistent with the global analysis including our data as
shown in Section 4.4. Further experimental activities are ongoing including π0 ALL. For
example, ALL in jet production with pp collisions was published by the STAR experiment at
RHIC [76]. Such efforts are discussed in Section 4.5.

1.9 Theoretical works to predict ∆g

As mentioned before, it is hard to predict PDF from the first principle. Nevertheless, since
the EMC experiment revealed that most of the proton spin is not carried by the spin of quarks
and antiquarks unexpectedly, theorists have worked to estimate the contribution of the gluon,
which is the possible part in the rest of the proton spin. Most of them are model dependent
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and derive only first moment of ∆g, which we describe as ∆G; ∆G(Q2) =
∫ 1
0 ∆g(x, Q2) dx.

One of the theoretical works is based on the QCD sum rule and ∆G = 2.1±1.0 at Q2 = 1 GeV2

is predicted by [77]. Following sum rule, another group [78] extracted the total angular
momentum Jg of the gluon, sum of spin and orbital angular momentum, to be Jg ∼ 0.35±1.3
at Q2 = 1 GeV2. Brodsky et al. [79] adopted hypothesis that a parton with large momentum
fraction of the proton also retain the helicity of the proton. In this hypothesis, they presume
the shape of ∆g as a function of Bjorken x. Finally, they derived ∆G ∼ 0.5 in their model.
Barone et al. [80] extracted ∆G based on non-relativistic constituent quark model. In the
model, the proton is regarded as three quarks floating in the classical gluon color field, which
is analogous to the electromagnetic field. They obtained ∆G = 0.24 at Q2 = 0.25 GeV2. In
addition, they predicted that the orbital angular momentum of the gluon is similar in size.
Instead of constituent quark model, Lee et al. [81] adopted the bag model. The bag for the
proton is filled with color charge and field in the model. Their prediction was ∆G ∼ 0.2.
Recently, the studies based on the non-relativistic quark model and the bag model were
updated by [82]. They estimated that ∆G is 0.2 to 0.3 at Q2 = 1 GeV2. They also provided
x dependence of ∆g and the shape is similar to that obtained by the global analysis. The
lattice QCD, which is only model independent way so far, attempted to derive ∆G. However,
the accuracy is still not sufficient and only the limit is obtained to be 3αs

2π |∆G| < 0.05 [83].
The predictions introduced here are different depending on the models. Moreover, the values
extracted include uncertainty of the model, or they assign large error. It is quite important
to determine ∆g in experiments.

1.10 ∆g measurement via ALL in π0 production

In pp collisions, the double helicity asymmetry ALL is an orthodox method to approach
polarized PDF. In this thesis, ALL in inclusive π0 production (Aπ0

LL) is measured. Aπ0

LL is
defined as

Aπ0

LL ≡ dσpp→π0X
++ − dσpp→π0X

+− − dσpp→π0X
−+ + dσpp→π0X

−−

dσpp→π0X
++ + dσpp→π0X

+− + dσpp→π0X
−+ + dσpp→π0X

−−
=

d∆σpp→π0X

dσpp→π0X
. (1.47)

Here dσpp→π0X is the cross section of inclusive π0 production and its subscripts indicate
helicities of the initial protons. The denominator corresponds to four times of the unpolarized
cross section. Using Equation (1.34) and (1.36), Equation (1.47) is rewritten as

Aπ0

LL =

∑

f1,f2,f ′

∫

dx1 dx2 dz ∆f1(x1) ∆f2(x2) d∆σ̂f1f2→f ′XDπ0

f ′ (z)
∑

f1,f2,f ′

∫

dx1 dx2 dz f1(x1)f2(x2) dσ̂f1f2→f ′X Dπ0

f ′ (z)
. (1.48)

As shown in this equation, Aπ0

LL is written as convolution of unpolarized and polarized PDF,
the cross section at the parton level and FF to π0. Owing to the universality of PDF and FF,
PDF and FF measured in other processes are available for Aπ0

LL. It should be noted that each
component depends on Q2, which usually takes p2

T of produced π0 in theoretical calculations.
As described in Section 1.8.1, unpolarized PDFs are well known by the past experiments.
For the polarized case, polarized DIS experiments constrain polarized PDF of quarks and
antiquarks as described in Section 1.8.2. Meanwhile, FF to π0 is determined by experiments
with e+e− collisions, where no uncertainty of PDF contribute (see [28–32] and references
given therein). In addition, the partonic cross section can be calculated by pQCD. Therefore,
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only ∆g is the unknown factor in Equation (1.48). This means that the measurement of Aπ0

LL

can directly constrain ∆g.
It is the most significant advantage of Aπ0

LL that ∆g appears at the leading order in pp
collisions. In DIS, ∆g is a contribution of the next-to-leading order because the gluon can
not be probed via electromagnetic interaction which is the leading effect in DIS. One of the
concerns in Aπ0

LL is whether pQCD is applicable because pQCD is a framework to compare
the data and theoretical calculations. It is important to achieve large

√
s and detect π0 with

high pT to apply pQCD to the data. This experiment was performed with the collider. This
make it possible to reach

√
s = 200 GeV. Usually,

√
s of 200 GeV is expected to satisfy the

requirement of pQCD. In terms of pT , pQCD require more than a few GeV. Since the pT

range of the measurement was 0.5 to 9 GeV/c, pQCD is applicable to the data in the higher
pT range. For the test of pQCD, the calculation of the cross section in π0 production is
compared with the measurement in Section 4.2.

Another concern in Aπ0

LL is how much gluons in a proton contribute to π0 production.
In terms of QCD subprocess, π0 is produced via gluon-gluon, gluon-quark and quark-quark
scatterings. Obviously, it is preferable that the fraction of gluon-gluon or gluon-quark sub-
processes are large to probe gluons in a proton. Figure 1.10 displays the fraction of each
subprocess in π0 production. In the measured pT range, 0.5 to 9 GeV/c, gluon-gluon scat-
terings are dominant at pT < 3 GeV/c and the gluon-quark subprocess is significant at
pT > 3 GeV/c. Meanwhile, the contribution of quark-quark scatterings becomes large at
pT > 15 GeV/c. This tendency is understood by considering valence quarks in the proton.
Most of partons with large Bjorken x is valence quarks as displayed in Figure 1.7 and, qual-
itatively, π0s with high pT are produced from partons with large Bjorken x. For this reason,
the contribution of quarks becomes significant for high-pT π0 production, while the gluon
contribution is dominant at low pT region.

It must be kept in mind that each term in Equation (1.48) includes corresponding d∆σ̂
to the subprocess. If d∆σ̂ is small, the contribution from the corresponding subprocess is
also small. Figure 1.11 displays the double helicity asymmetry for subprocesses (âLL) as a
function of scattering angle on the partonic center-of-mass system. In the similar way to
Equation (1.47), âLL is defined as

âLL ≡ d∆σ̂

dσ̂
, (1.49)

where superscripts indicating parton flavors are abbreviated. Roughly speaking, our mea-
surement looks at around cos θ = 0 because π0s are detected at the central rapidity. There
is no significant difference in any subprocesses except for the group E, in which âLL is neg-
ative. However, in total, each âLL for the gluon-gluon, gluon-quark, quark-quark scatterings
becomes positive in the measured kinematical region.

In Section 1.1, we introduced that Aπ0

LL can approximately be described as a quadratic

function of ∆g
g . The approximate relation of Aπ0

LL and ∆g is reintroduced;

Aπ0

LL(pT ) ∼ P2(pT )

[

∆g(ξ)

g(ξ)

]2

+ P1(pT )

[

∆g(ξ)

g(ξ)

]

+ P0(pT ),

ξ ≡ 〈x1〉 = 〈x2〉, depends on pT . (1.50)

To obtain the approximation, it is assumed that the integrals over x1 and x2 in Equation (1.48)
is represented by the value at mean x1 and x2. In addition, because the kinematical coverage
of our measurement is ∼0 in pseudorapidity, mean values of x1 and x2 is likely same. They are
described as ξ and should depend on pT of π0 as written in the second line of Equation (1.50).
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in π0 production as a function of π0 pT . Mea-
sured pT range in this thesis is 0.5 – 9 GeV/c.
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order calculation. Our measurement covers
central rapidity and it roughly corresponds
to cos θ ∼ 0.

Hence, Equation (1.48) can be written by the second, first and zeroth order term of ∆g(ξ).
They correspond to terms of P2, P1 and P0. Considering that Equation (1.48) includes g(x) at

the denominator, ∆g(ξ)
g(ξ) is used instead of just ∆g(ξ). Remaining part from FF, the partonic

cross sections and PDF except for ∆g are confined into P0,1,2. In Equation (1.50), It is clearly
described that each term depends on π0 pT . That is originally Q2 dependence of PDF and
FF, as well as pT dependence of the partonic cross section. In Section 4.3, an interpretation
from measured Aπ0

LL into ∆g is introduced using a simple model based on the relation of
Equation (1.50).

The first experimental results of Aπ0

LL was published in 1991 by E704 experiment at FNAL
with proton-proton and proton-antiproton collisions at

√
s = 19.4 GeV [1]. However, uncer-

tainty of the measurement was too large to constrain ∆g. At the collider energy, the PHENIX
experiment published the results of Aπ0

LL in 2004 [2] and improved in 2006 [3]. Figure 1.12
displays the results. Two pQCD-based theoretical calculations with different ∆g input are
overlaid in the figure. GRSV-std is the case that uses ∆g of the best fit in the global anal-
ysis with DIS data, while GRSV-max adopts maximally polarized ∆g. The data disfavors
GRSV-max, but it is hard to constrain ∆g due to poor statistics. The statistics is much
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improved in this thesis by a factor of about 25 in figure-of-merit.16 It results in making
statistical uncertainty small to be one-fifth and extending pT range of the measurement up
to 9.0 GeV/c.
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Figure 1.12: Aπ0

LL as a function of pT measured by the PHENIX experiment [3]. Two theo-
retical curve is calculated based on pQCD using unpolarized PDF by CTEQ [49], polarized
PDF by GRSV [67] and FF by KKP [29]. GRSV-std uses ∆g of the best fit in the global
analysis with DIS data, while GRSV-max adopts maximally polarized ∆g [84].

1.11 ALL in terms of experimental observables

Aπ0

LL is defined as Equation (1.47). From Equation (1.47), the helicity-dependent cross section
is parameterized using ALL as;17

σh1h2 = σ0(1 + h1h2ALL), (1.51)

where σ0 is the unpolarized cross section and obtained by averaging spin of the initial protons.
h1 and h2 denote helicity of the initial protons and take +1 or −1 (simply + or − when appear
as subscripts). In this equation, the cross section is constrained by relation;

σ++ = σ−−, σ+− = σ−+. (1.52)

The constraints result from the parity conservation of the reaction since the parity-violating
weak interaction is negligible at the energy scale of this experiment.

16Because statistical uncertainty of ALL is described as Equation (1.56), figure-of-merit for ALL can be
written as L(P̄ aP̄ b)2 and the statistical error is proportional to 1

P̄ aP̄ b
√

L
.

17In this equation, it should be deemed that the differential cross section dσ is integrated over a certain
kinematical range and ALL is also average value in the range.
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In the experiment, the polarized proton beams are collided for a certain period and yield
of particles produced in the collisions, which is π0 in this thesis, are measured. In general,
the yield is proportional to the cross section, σ, and integrated luminosity, L. The integrated
luminosity is decomposed into and proportional to intensities of two beams. The beam
polarization P is defined as

P =
I+ − I−
I+ + I−

, (1.53)

where I+ (I−) is population of the proton with positive (negative) helicity in the beam.
Obviously, range of P is −1 to +1. In accordance with these, the yield can be written as

NP aP b = LP aP b ǫ σ0(1 + P aP bALL), (1.54)

where two beams are identified by a and b at superscript of P . ǫ indicates a factor from the
experimental instruments, such as detector acceptance, detection efficiency and so on. More
detail formalization is described in Section A.3.

In this experiment, up to 120 bunches of the polarized proton beam are stored in each
RHIC ring and continuously collided. It is optional to assign positive or negative helicity
to each bunch of the protons. We usually choose the assignment of the beam helicities
so as to occur the collisions with all possible helicity states in a single store of the beams.
Owing to this feature, the data from the collision with any helicity combinations are obtained
practically at the same time. The measurement confirmed no bunch dependence of the beam
polarization and no difference in the polarization between positive- and negative-helicity
bunches. See Section 2.1 in more detail about the beam. The helicity combination of the
beams in every collision is categorized into 4 pattern; (+P̄ a, +P̄ b), (+P̄ a,−P̄ b), (−P̄ a, +P̄ b)
and (−P̄ a,−P̄ b). P̄ is introduced as absolute value of the beam polarization. For simplicity,
each combination is written as +− for (+P̄ a,−P̄ b) and N+− ≡ N+P̄ a −P̄ b , for example.

Based on Equation (1.54), ALL and its statistical error (∆ALL|stat) is obtained from the
measured variables as follows;

ALL =
1

P̄ aP̄ b

(N++ + N−−) − (N+− + N−+)R

(N++ + N−−) + (N+− + N−+)R
, R =

L++ + L−−
L+− + L−+

(1.55)

∆ALL|stat =
1

P̄ aP̄ b

(N++ + N−−)(N+− + N−+)(1 + R)

(N++ + N+− + N−+ + N−−)2

×
[

(

∆(N++ + N−−)

N++ + N−−

)2

+

(

∆(N+− + N−+)

N+− + N−+

)2
]

1
2

∼ 1

P̄ aP̄ b

1√
N++ + N+− + N−+ + N−−

. (1.56)

Here ∆N indicates error of N . To obtain the last equation, N++ + N−− = N+− + N−+,
R = 1 and ∆N =

√
N are assumed. However, the assumption of ∆N =

√
N is finally

modified as described in Section 3.6.3. In Equation (1.56), ǫ and σ0 in Equation (1.54) are
canceled between the numerator and the denominator, and the systematic uncertainties from
them don’t affect the result of ALL. R is called “relative luminosity”. Since R is ratio
of the helicity-dependent luminosities, it is not necessary to consider absolute scale of the
luminosities, which is usually one of the major uncertainties in cross section measurements.
Consequently one needs to measure the beam polarization P̄ , the yield N and the relative
luminosity R to extract ALL.
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1.12 Other asymmetries measured

In addition to ALL, two kinds of asymmetries are measured in this thesis. One is single
helicity asymmetry AL. AL appears with one of the incident protons polarized longitudinally
and spin of the other proton is averaged. AL is defined as follows;

AL ≡ (dσ−+ + dσ−−) − (dσ++ + dσ+−)

(dσ−+ + dσ−−) + (dσ++ + dσ+−)
=

(dσ+− + dσ−−) − (dσ++ + dσ−+)

(dσ+− + dσ−−) + (dσ++ + dσ−+)
. (1.57)

dσ and its subscripts indicate the cross section and helicity state of the incident protons. In
the middle of Equation (1.57), spin of the proton denoted at the second sign of the subscript
is averaged, while the first sign is averaged in the right-hand side. In the reaction conserving
the parity, AL must be zero. This is equivalent to that substituting Equation (1.52) into
Equation (1.57) results in AL = 0. In terms of the experiment, confirmation of zero AL

is important to prove validity of the measurement because the contribution of the weak
interaction is negligible at the energy scale of the experiment.

Another measured asymmetry is transverse double spin asymmetry ATT . ATT appears
when both incident protons are polarized transversely. Definition of ATT is similar to ALL;

ATT ≡ dσ↑↑ − dσ↑↓ − dσ↓↑ + dσ↓↓
dσ↑↑ + dσ↑↓ + dσ↓↑ + dσ↓↓

. (1.58)

Two arrows at subscripts of dσ correspond to spin state of two incident protons each. ↑ (↓)
indicates that the spin is (anti)parallel to a certain axis which is perpendicular to motion
direction of the beam. One difference from ALL is dependence on azimuthal angle in the
particle production. In general, the measured asymmetry (A′

TT ) depends on − cos(2φ), where
φ = 0 or π is defined as direction parallel to the polarization [85]. In this experiment, the
detector covers 33.75 to 123.75 and −123.75 to −33.75 degrees. The scale factor is

∫

− cos(2φ)dφ
∫

dφ
∼ 0.588. (1.59)

Therefore, A′
TT must be scaled by the factor to obtain ATT ; A′

TT ∼ 0.588ATT .
In analogy with the factorization of ALL, ATT is described by the convolution of the

transversity, the partonic cross section and FF. As described in Section 1.5.3, the proton does
not have the gluon transversity. Therefore, there is no contributions to ATT from processes
with gluons at the initial state in the QCD subprocess. Because gluon-gluon scatterings and
gluon-quark scatterings are dominant in the measured pT range (see Figure 1.10), ATT is
assumed to be smaller than ALL. In addition, ATT is suppressed at the stage of the QCD
subprocess. Figure 1.13 displays the transverse double spin asymmetry of the partonic cross
section (âTT ). Because π0s are detected at the central rapidity in our measurement, cos θ is
roughly zero. âTT with the gluon at the initial state is not shown in Figure 1.13. In RHIC,
the contribution from quark-quark scatterings is larger than quark-antiquark scatterings due
to the proton-proton collider. Therefore, âTT is suppressed in RHIC compared to âLL in
Figure 1.11. For these reason, ATT is expected to be much smaller than ALL.

In this thesis, ATT is mainly regarded as contamination in the ALL measurement. In
practice, spin direction of the polarized beam is not exactly longitudinal in the measurement of
ALL, where it is of course intended to make the polarization longitudinal, due to imperfection
of the instrumental apparatus. Remaining transverse component of the beam polarization
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Figure 1.13: The transverse double spin asymmetry of the partonic cross section (âTT ) as a
function of the scattering angle on the partonic center-of-mass system. This is the leading
order calculation. Our measurement covers central rapidity and it roughly corresponds to
cos θ ∼ 0. The azimuthal angle dependence of âTT , which is denoted as cos 2φ, is corrected
in the figure.

causes contribution of ATT to the measured asymmetry. In such a case, the relation between
ALL and measured quantity is modified as follows (see also Section A.3);

P a
L

P̄ a

P b
L

P̄ b
ALL +

P a
T

P̄ a

P b
T

P̄ b
A′

TT =
1

P̄ aP̄ b

(N++ + N−−) − (N+− + N−+)R

(N++ + N−−) + (N+− + N−+)R
, (1.60)

where PL and PT are longitudinal and transverse component, respectively, of the beam po-
larization and P̄ =

√

(PL)2 + (PT )2. Therefore, the measured asymmetry must be corrected
by the term of A′

TT to extract ALL.
Method to extract AL and ATT in the experiment is similar to Equation (1.56) for ALL.

To obtain ATT , transversely polarized beam is used unlike the measurement of ALL. See also
Section A.3 for more detail.
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Chapter 2

Experiment

The data for this thesis were taken by means of the PHENIX detector with polarized proton
beam of RHIC (Relativistic Heavy Ion Collider) at Brookhaven National Laboratory (BNL)
in the U.S. during the 2005 run.1 The duration of the 2005 polarized proton run was about 10
weeks (April 17th – June 24th) mainly with the beam energy of 100 GeV, which corresponds
to a center-of-mass energy (

√
s) of 200 GeV, and with the beam spin polarized longitudinally

at the collision point of PHENIX.2 The data taken in this period was used in the analysis.
RHIC achieved a maximum luminosity of 10 × 1030 cm−2 sec−1 and an average luminosity
of 6 × 1030 cm−2 sec−1. PHENIX accumulated the integrated luminosity of 3.8 pb−1. After
various quality assurance selections for polarized beam, total amount of data used in this
thesis is 2.4 pb−1. The average polarization of the beams for this data set was about 50 %.
Figure 2.1 displays the integrated luminosity and figure-of-merit for ALL as a function of
time. In this chapter, the experimental setup is explained.

200 GeV pp “Figure of Merit”

(6/24/05 FINAL)
PHENIX Goal 226 nb-1

205 nb-1

200 GeV pp Integrated Luminosity

9.12 pb-1 live ZDCLL1

PHENIX Goal 5.5 pb-1 live BBCLL1 (45% pol.)

(6/24/05 FINAL)

85.1 B BBCLL1 events sampled

3.78 pb-1 live BBCLL1

163 nb-1 transverse

Figure 2.1: (Left) Integrated luminosity as a function of time. The black line is for BBCLL1
live trigger and the red line is for ZDCLL1-wide live trigger. Events with BBCLL1 is used
in the usual analysis at PHENIX, as well as in this thesis. See Section 2.3.5 about the
triggers. (Right) Figure-of-merit for ALL as a function of time. The figure-of-merit is based
on BBCLL1 live trigger. See Section 1.11 about the figure-of-merit.

1RHIC can also collide heavy ions up to
√

s of 200 GeV per nucleon to search for quark gluon plasma.
2In the 2005 run, a short physics run with transverse polarization and a commissioning run with the beam

energy of 205 GeV were also performed.
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2.1 RHIC as a polarized proton collider

Figure 2.2: The accelerator complex of RHIC for the polarized proton run.

Figure 2.3: Example of the spin pattern of the beams. In this case, positive and negative
helicities are assigned to the alternating successive bunches in the blue beam and the alter-
nating successive pairs of bunches in the yellow beam. This spin pattern allows us to detect
particles from the collision with any helicity combinations at the same time.

Figure 2.2 displays the accelerator complex to accelerate and collide the polarized proton
beams. The polarized proton is provided at optically pumped polarized H− source (OPPIS),
where the DC beam of 0.5 – 1.5 mA H− in a single 300 µsec pulse (9 – 28 × 1011 H− ions)
and the polarization of more than 80 % was reached [86]. A pulse of H− is accelerated up to
200 MeV in kinetic energy by an RFQ (Radio Frequency Quadrupole) and the LINAC (Linear
Accelerator) with an efficiency of ∼50 %, then it is strip-injected and captured into a single
bunch in the AGS (Alternating Gradient Synchrotron) booster. Bunched polarized protons
are accelerated by the booster to kinetic energy of 1.5 GeV and transferred to AGS. Protons
achieve the energy of 24.3 GeV in AGS and are injected through AGS-to-RHIC transfer line
into two RHIC rings, which are referred to as blue (clockwise) and yellow (counter-clockwise)
rings. RHIC can accelerate protons keeping polarization up to 250 GeV and collide them at
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the 6 interaction points.3

RHIC can store up to 120 bunches of polarized proton beam in each ring and therefore the
time interval of the bunches is 106 nsec considering the RHIC circumference of 3834 m. The
process to boost the protons from the source and inject them into the RHIC ring is repeated
bunch by bunch until all planned bunches are filled. After that, the bunches of the protons are
accelerated up to the flat top energy in RHIC and then collided. The collisions continue with
typical life time of 8 hours and then the beams are dumped. We define “fill” as a sequence of
the flow from injection to dump of the beam. One of the remarkable features of RHIC is that
the spin pattern of the bunches is optional by freely flipping the spin of the protons at OPPIS
bunch by bunch. (see Figure 2.3) This feature makes it possible to collect the data of the
collision with possible spin combination almost simultaneously. This is greatly helpful in the
analysis, where one can cancel out any common systematic uncertainties between bunches,
therefore between spin combinations, like that of detector acceptance. Only errors depending
on the bunches have to be considered, for example, such as the correlation between bunch
characteristic (intensity and shape) and spin because a certain bunch of the blue ring collides
always with the same bunch of the yellow ring.4

RHIC is designed with εN (normalized emittance) of 20π mm·mrad and β∗ (betatron
amplitude function at an interaction point) at PHENIX of 1 m. The transverse size of the
beam at the PHENIX collision point is calculable using these values to be ∼0.4 mm. This
value is reasonable compared with the measurement, where the transverse beam profile is
estimated from the collision rates with the beam positions continuously shifted each other. It
must be also noted that the transverse position of the collision and the tilt of the beam travel
from the designed circumference are negligible compared to other systematic uncertainties
like a resolution or a misalignment of the detector (see Section 3.7.1). The spread of the
actual collision position along the beam axis is typically 50 cm in root-mean-square (RMS),
which is measured by the detector and the longitudinal offset from the ideal collision point
is considered in the analysis.

The spin of the beam is oriented to the vertical direction, which is the stable direction
during the acceleration in the normal synchrotron accelerator because the magnetic field to
bend the beam is vertical. However, there are many depolarizing resonances at certain beam
energies, depending on parameters of the accelerator. The important role to overcome the
depolarization and maintain the beam polarization is played by the “Siberian Snake” mag-
nets [87]. To avoid additional depolarizing resonance caused by installing the single Snake,
Two Snakes are placed in each ring of RHIC and the location of one Snake is opposite side
of the other (3 o’clock and 9 o’clock). Each Snake in RHIC consists of four superconducting
helical dipole magnets of identical structure. The strength and the direction of the field are
different between four magnets (−4 – +4 T), while they are independent of beam energy. By
one Snake’s reversing the spin direction of the beam without an orbit distortion at the en-
trance and the exit of the Snake, the resonance conditions are shifted and the depolarization
is avoided. Similarly, one other type of the Snake magnet is placed in AGS. Unlike the Snake
in RHIC, the AGS Snake is just one normal-conducting helical dipole magnet and rotates the
direction of the beam spin by only 9 degrees, which is enough to maintain the polarization in
the lower-energy synchrotrons, such as AGS, with weaker depolarizing resonances. This par-
tial rotation forces to induce full spin flip at the beam energy on the depolarizing resonances,

3Comparing the RHIC rings to a clock face, each interaction point is named using number of its location,
for example, as IP12 or 12 o’clock for the most north interaction point.

4Actually, a certain spin combination is usually assigned to more than 10 bunches in one fill, therefore the
bunch characteristic is well averaged and the difference between spin combinations becomes small.
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while it keeps spin direction unperturbed except for such a depolarizing conditions.
It is necessary to collide beams with polarized longitudinally to measure double helicity

asymmetry to study gluon polarization in the proton. To realize this purpose, spin rotators
are located before and after the interaction region of PHENIX in each ring; the former rotates
the beam spin from the vertical to the longitudinal direction and the latter restores it to the
vertical direction. It is also possible to collide beams with radial transverse polarization, but
data with such a condition were not taken in the 2005 run. One spin rotator consists of four
helical dipole magnets, whose structure is same as that for the Snake magnet except two
of them have alternate handedness of helical magnet. They are powered independently to
generate appropriate field needed for the spin rotation, which depends on the beam energy
(−3 – +3 T at around 100 GeV).

2.2 Polarimeters

RHIC utilized two types of polarimeters to determine the absolute beam polarization; the
proton-carbon polarimeter [88] and the polarized hydrogen gas jet polarimeter [89]. In addi-
tion to these, another polarimeter is located at the interaction region of PHENIX to monitor
the direction of the beam polarization at the time of the collision. All of these polarime-
ters utilize the transverse single-spin asymmetry (AN ) which arises by the collision of the
transversely polarized beam and the target (or another beam). Because the measured raw
asymmetry (ǫ) is proportional to the beam polarization (P ), if the size of the physics asym-
metry AN is known, one can obtain the beam polarization by dividing ǫ by AN (P = ǫ/AN ).
The average beam polarization for the data set in this study was about 50 %. The error on
the polarization behaves as the scale error on ALL. The spin rotators were turned on during
the data taking period for this study. The transverse component of the beam polarization
at the collision point was measured to be less than 15 %, which corresponds to the longitu-
dinal component of more than 98 %. See Section 3.3 and Table 3.1 in Section 3.2 about the
polarization in this thesis.

2.2.1 Proton-carbon polarimeter (pC polarimeter)

The proton-carbon polarimeter (pC polarimeter) employs AN in the elastic scattering between
the polarized proton beam and the carbon target (ApC

N ) at very forward region, 4-momentum
transfer squared of −t ∼ 0.01− 0.02 GeV2/c2. It is desirable to collect high statistics within
short measurement time to periodically monitor the polarization with satisfactory accuracy
and without disturbing physics experiments. While the size of ApC

N in this −t region is small,
about 1 %, the cross section is large. Moreover, the requirement is satisfied by using an
ultra-thin carbon ribbon of 3 – 5 µg/cm2 with a width of 10 µm as the target. It is inserted
into the beam at the polarization measurement and slow recoil carbons are detected by the
silicon detectors placed on both sides of the target. pC polarimeter collects ∼ 2× 107 events
per one measurement of ∼20 seconds on an average. It corresponds to the statistical error of
the beam polarization of ∼2 %, which is comparable with fill-by-fill uncorrelated systematic
uncertainty and smaller than global systematic uncertainty of ∼6 %. The measurements were
performed about once an hour and it turned out that there is no significant depolarization
during the fill. Owing to large event sample, it is possible to study the bunch-by-bunch
variation and no bunch dependence in the polarization was confirmed within the uncertainty
of the measurement. One difficulty of pC polarimeter was large systematic uncertainty due
to the unknown ApC

N at the beam energy of 100 GeV, which was extrapolated from the
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measurement at 21.7 GeV on the basis of the theory. This systematic shift was calibrated by
another polarimeter, the polarized hydrogen gas jet polarimeter.

2.2.2 Polarized hydrogen gas jet polarimeter (jet polarimeter)

The polarized hydrogen gas jet polarimeter (jet polarimeter) features the self-calibration
system, which means that absolute beam polarization can be measured without any theo-
retical assumption by means of the scattering of identical particles with both polarized. Jet
polarimeter utilizes AN in the proton-proton elastic scattering (App

N ); the polarized proton
beam and the polarized atomic hydrogen gas jet target.

Since both the beam and the target are polarized and periodically flip its spin direction,
App

N can be defined by using either the beam or the target polarization, and averaging the
other polarization to reproduce the unpolarized condition; polarized beam with unpolarized
target and unpolarized beam with polarized target. In either case, App

N is same in the same
kinematical region. The polarization of beam (Pbeam) and target (Ptarget) are related as App

N =
ǫbeam/Pbeam = ǫtarget/Ptarget, where ǫbeam(ǫtarget) is the measured raw asymmetry based on
the beam (target) polarization. Therefore the beam polarization can be determined absolutely
by the well-known Ptarget and the asymmetry measurement with sufficient precision.

The free atomic hydrogen gas jet crosses the RHIC beam from top to bottom at a speed
of 1.6× 103 m/sec. The areal density of the target is 1012 H atoms/sec. The direction of the
target spin is vertical and reversed every 10 minutes. The target polarization is measured
by a Breit-Rabi polarimeter, which is located below the interaction point with the beam,
to be 0.924 ± 0.018 and no difference in the polarization is observed between spin up and
down. The recoil protons are detected by silicon detectors located to the left and to the
right of the target. The kinematical region of 0.001 < −t < 0.01 GeV2/c2 in the proton-
proton elastic scattering is used to determine the beam polarization. App

N is around 4 %
in this kinematical range and the order of 107 events is required in terms of the precision.
However, because the event rate of jet polarimeter is very low, about 5 Hz, due to the gas
target, it cannot be used for the periodical fast measurement, unlike pC polarimeter with
high event rate using the solid target. On the other hand, the operation of jet polarimeter
does not interrupt the physics measurements because of the low event rate. Jet polarimeter
accumulated events continuously through the 2005 run and the average beam polarization
over the run was extracted. The relative error of the beam polarization (∆P/P ) was ∼6 %
based on the measurement by jet polarimeter. To normalize pC polarimeter, pC polarimeter
aggregated the data in the same period as when jet polarimeter operated and extracted ApC

N

using the beam polarization determined by jet polarimeter. The fill-by-fill and hourly beam
polarization was in turn obtained based on measured ApC

N . In this sense, jet polarimeter is
regarded as the calibrator for pC polarimeter.

2.2.3 PHENIX local polarimeter

It is necessary for the study of the polarized gluon distribution to collide the beam with
longitudinally polarized. The function to rotate the beam spin from vertical to longitudinal
direction is carried out by the spin rotator described in Section 2.1. In the interaction region
of PHENIX, two polarimeters are located for the blue and the yellow beam to monitor the
direction of the beam polarization at the collision point (local polarimeter). As hardware,
local polarimeters are identical to zero degree calorimeters of PHENIX, which are placed at
1800 cm away from the collision point and between the blue and yellow beam pipes after
DX magnet for the separation of two beams. The size of the acceptance is 13.6 cm high
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and 10.0 cm wide. See Section 2.3.3 for more details about the detector. The single spin
asymmetry with longitudinally polarized beam (AL) is expected to be 0 (or quite small) in the
proton-proton collision because it violates the parity conservation. Instead, local polarimeter
uses AN in the neutron production at the proton-proton collision. The size of the asymmetry
is ∼10 % at

√
s = 200 GeV and significant asymmetry is observed even at

√
s =62 and

410 GeV. The asymmetry appears for the neutron generated in the forward region in view
of the polarized beam, and therefore each local polarimeter watches the beam facing it.
Local polarimeter confirms that the beam is polarized longitudinally at the collision point by
measuring zero asymmetry because AN can be observed with a transversely polarized beam.
Moreover, it can also determine the residual transverse component of the beam polarization
by comparing the size of the asymmetries measured with spin rotator on and off. One
concern is whether the beam helicity is positive or negative with the rotator on because AN

is related to only transverse component of the beam spin and therefore local polarimeter
can not determine its longitudinal direction. The concern is resolved by commissioning the
rotator carefully. For example, by tuning the rotator, radial polarization is obtained as
expected; it can be confirmed by local polarimeter.5 The feature of local polarimeter is that
its nondestructive measurement allows other physics measurements in parallel with it. It
is important to remind that pC polarimeter observed ApC

N with rotators on and with the
asymmetry by local polarimeter zero. This means that spin rotators properly restore the
beam polarization from the longitudinal to the vertical direction.

2.3 PHENIX detector

2.3.1 Overview

The location of the PHENIX detector is 8 o’clock of the RHIC ring. The photos of the
PHENIX detector as well as the schematic view are displayed in Figure 2.4 and 2.5. For
convenience, we define Cartesian coordinate system in PHENIX. The z-axis is taken along
the beam axis and its direction is south to north at 8 o’clock. The y-axis is oriented from
bottom to top and the x-axis is east to west. The origin is the planned collision point by
RHIC and many detectors of PHENIX are constructed symmetrically about the origin. The
variable often used in this thesis is also defined in Figure 2.6. Azimuthal angle (φ) of a vector
is defined as the angle between the y-axis and the projection of the vector on the x-y plane.
Polar angle (θ) of a vector is defined as the angle between the x-y plane and the vector.

Therefore pseudorapidity (η) is defined as η = log
[

1+tan(θ/2)
1−tan(θ/2)

]

. Based on this coordinate, the

detectors of PHENIX are sometimes called with prefix of the direction, like east arm and
north counter, for example.

The abbreviations of the detectors in Figure 2.5 are listed in Table 2.1. The PHENIX
detector consists of global detectors and four spectrometers. Global detectors include beam-
beam counters and zero degree calorimeters. They can provide information about character-
istic of event and are frequently utilized in various analysis in PHENIX.

Two of spectrometers are constructed at the left and right side of the collision point to
cover central region (central arms). Each central arm has the acceptance of −0.35 to +0.35 in
pseudorapidity and 90 degrees (33.75 to 123.75 and −123.75 to −33.75 degrees) in azimuthal
angle. To measure momentum of charged particles, the inside of the central arms are filled by

5The rotator is operated considering the effect of the DX magnet to bend the beam, which also rotates
the beam spin. For this reason, even if the rotator is configured by mistake, it does not result in the opposite
helicity to what is expected. This also assures that the the beam helicity is correct direction.
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Figure 2.4: (Top) The photo of the PHENIX detector from beam view. Beams go up and
down. The two spectrometers on the left and right side are the central arms. The blue
detectors at the outermost are EMCal. The north muon arm was not installed at the time
when the photo was taken. (Bottom) The side view of the PHENIX detector. Beams go left
and right. The two spectrometers on the left and right are the muon arms. The structure
labeled as PHENIX at the center is the magnet for the central arms. The east arm is moved
in the bottom photo.
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Figure 2.5: The cutaway figure of the PHENIX detector.

Figure 2.6: The coordinate at the PHENIX detector. The beams go on the z-axis. Azimuthal
angle φ and Polar angle θ is defined for the reference vector v as shown in the figure.
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Abbreviation Detector name

BBC beam-beam counters
ZDC zero degree calorimeter
DC drift chamber
PC1, 2, 3 pad chamber 1, 2, 3
RICH ring image Cherenkov counter
TEC time expansion chamber
ToF time of flight detector
EMCal (PbSc) electromagnetic calorimeter (lead scintillator)

(PbGl) (lead glass)
MuTr muon tracker
MuID muon identifier

Table 2.1: The abbreviations of the detectors.

the magnetic field, which is oriented along the beam axis, and therefore charged particles are
bent to the azimuthal direction. The magnet (the central magnet) is designed not to block the
aperture of the central arms and to minimize the interaction with particles produced at the
collision point. The central arms include chambers for tracking charged particles, RICH and
ToF for particle identification, and EMCal to detect mainly electrons and photons. Figure 2.7
displays the beam view of the central arm.

Another two spectrometers specialize in the detection of muon (muon arms) and located
at the forward and backward region. The coverage of the south (north) muon arm is 1.2 <
|η| < 2.2 (2.4) over full azimuth. Each muon arm consists of two detector systems; MuTr to
measure momentum of muons and MuID to select muon events. To measure the momentum
of the particles, MuTr is enclosed by the conical-shaped magnet which generates radial field.
In addition to these detectors, a material of 5 interaction lengths is located between the
collision point and the muon arm and it reduces the hadron background by a factor of ∼100.
In this thesis, this arm is not used, however it plays the leading role in physics with W
bosons, which are detected by hunting high-momentum muons, to study the contribution of
sea quarks to the proton spin (see also Section 4.5).

The PHENIX detector is composed of many sub-detectors to cover a wide range of physics
by detecting various kinds of particles including photons, electron, muons and identified
hadrons. The goal of this work is to study the gluon polarization in the proton via the
measurement of ALL in the π0 production. Hence, a part of the PHENIX detector related
to the π0 detection is mainly used in this thesis. The most important detector in this thesis
is EMCal at the outermost of the central arm. Both the energy and the hit position of the
photons from the decay of π0s are detected by use of EMCal. EMCal generates trigger for
high energy photon, which is described in Section 2.3.4. To support particle identification,
PC3 in front of EMCal is used to remove charged particle. BBC and ZDC, which are used
in the general analyses in PHENIX, are essential in addition to EMCal. They can measure
the position the beams collide at. Because of the better resolution of BBC than ZDC, the
measurement by BBC is usually adopted for the purpose. Moreover, the events triggered
by BBC is adopted as the minimum bias trigger, which is also one of the requirements for
the high-energy photon trigger, and the number of such events is used for both the absolute
and the relative luminosity. See Section 2.3.5 about the trigger. ZDC has the role as local
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Figure 2.7: The beam view of the PHENIX detector. The beams pass the center of BBC.

polarimeter as described in Section 2.2.3. In addition, ZDC is reference detector to BBC
to evaluate the uncertainty of the relative luminosity. In the following sections, detectors
playing major role in this thesis, BBC, ZDC and EMCal, and data acquisition system (DAQ)
are explained. Introduction for some other detectors are described in Section A.4.

In the following text, we concentrate on the system of PHENIX and the specific procedure
for PHENIX. To explain things smoothly, we define some terminologies used in this thesis.
We describe the origin of the PHENIX coordinate as “collision point” and actual position the
beam protons collide at as “event vertex” to avoid confusing. As described in Section 3.7.1,
the transverse component (offset in the x-y plane) of the event vertex and the direction of
beam momentum momentum at the collision point are ignored in this thesis. What a bunch of
the RHIC beam crosses the collision point is described as “beam crossing”. RHIC is designed
to collide a bunch of the blue beam always with a certain bunch of the yellow beam. Therefore
the events taken at PHENIX are sorted by the crossings and the “crossing number”, 0 – 119,
is assigned to each event. The dependence of measurements on the crossing is often discussed
since some important variables such as the luminosity and the spin pattern are dependent on
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the crossing. Technically the system of PHENIX like the electrical circuits is synchronized
with 9.4 MHz clock called “RHIC beam clock”, or simply RHIC clock, which is the periodic
pulse generated every crossing timing of ∼ 106 nsec.

2.3.2 Beam-beam counters (BBC)

Figure 2.8: Photos of BBC. (Left top) The element of BBC. (Left bottom) The half piece
of BBC which consists of 64 elements. (Right) BBC after installation. The collision point is
the left of the picture and BBC is attached behind the magnet of the central arm.

Beam-beam counters (BBC) consist of two identical pieces installed across the beam
interaction point and along the beam axis. Each counter surrounding the beam pipe is
located at 144 cm from the collision point and has outer diameter of ∼30 cm and inner
diameter of ∼10 cm. This corresponds to the acceptance of 3.0 – 3.9 in pseudorapidity (η)
over full azimuth. Each counter is composed of 64 photomultiplier tubes (PMT) of 2.5 cm
diameter attached to 3 cm-long quartz as a Cherenkov radiator, and therefore 128 elements
are in whole BBC. The shape of quartz is hexagonal cylinder and they are assembled closely
each other. The photos of BBC are displayed in Figure 2.8.

The important role of BBC is to determine the collision time and the event vertex. The
former is used as the start time of the time-of-flight measurement and the latter is primary
start point for the particle tracking. The width of the vertex along the beam axis is typically
50 cm. The collision time and the event vertex are obtained from the timing information
of the hit in the counters. The collision time is related to the average time of the counters,
TS+TN

2 − L
c , where TS (TN ) is the time of the particle hit in south (north) counter, L is

the distance from the collision point to each counter (= 144 cm), and c is the speed of
light. TS and TN are estimated by averaging the timing of the elements with particle hit in
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each counter. The vertex is calculated from the time difference of the counters, c(TS−TN )
2 .

Therefore, the time resolution of BBC is important for both the efficient particle identification
and the precise tracking. As described above, the event vertex is reconstructed online with
degraded precision and utilized for the trigger of the data taking (see Section 2.3.5 about the
trigger). In addition, the number of such triggered events is counted by a scaler and is used
as the relative luminosity. The resolution of the event vertex is estimated to be ∼5 cm online.
In the offline analysis, the precision is improved by applying corrections like a basic slewing
correction as well as using the data without degradation. The collision time resolution (∆TS

and ∆TN ) of better than 100 psec and the vertex resolution of 2 cm is achieved offline. In
both offline and online, at least one hit is required in each counter to reconstruct the event
vertex. The proton-proton cross section detected by BBC is ∼23 mb, which corresponds that
the detection efficiency of BBC to the proton-proton collision is about 50 %. The most of
the cross section measurements utilize the events triggered by BBC to normalize the yield by
the luminosity.

2.3.3 Zero degree calorimeter (ZDC)

Figure 2.9: The top view of the ZDC location.

In PHENIX, 2 zero degree calorimeters (ZDC) are installed at the north and the south
side of the collision point each as displayed in Figure 2.9. They are placed at 1800 cm away
from the collision point between the blue and the yellow beam pipes on the extended line
of the beam axis (on the z-axis) behind the DX magnet to bend the beam. The acceptance
window is 10 cm wide and 13.6 cm high. The width of the detector is constrained by limited
space. ZDC is a hadron calorimeter composed of three identical modules. The mechanical
design of the module is displayed in Figure 2.10. Each module is made by an absorber of
tungsten plates to generate hadronic shower and PMMA-based (polymethylmethacrylate-
based) optical fibers to detect the Cherenkov radiation emitted by charged particles in the
shower. The size of the tungsten plate is 10 cm wide, 18.7 cm high and 0.5 cm thick. The
optical fibers with diameter of 0.5 mm and numerical aperture of 0.5 are arranged in plates
and fixed by silicone rubber glue. In one module, 27 layers of tungsten plate and optical
fibers are sandwiched each other with tilted by 45 degrees. This angle is defined to roughly
accord with the direction of the Cherenkov radiation in the optical fibers with refractive
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Figure 2.10: The mechanical design of ZDC. Dimensions shown are in millimeter. The side
view and the beam view of one module is displayed in the bottom left and the bottom right,
respectively. The top is one layer of the PMMA fibers.
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index of ∼1.5. All optical fibers in one module are gathered and mounted on one PMT.
After assembled, one module has length of 23.2 cm, interaction length of 1.7 and radiation
length of 50. The performance of ZDC is evaluated using test beam and energy resolution of
19 % at 100 GeV proton beam was obtained. Because ZDC is located just behind the DX
magnet, charged particles are swept away and neutral particles of long life, mainly photons
and neutrons, can arrive at ZDC. The separation of photons and neutrons is done by looking
at the energy deposit in the second module, which electromagnetic shower cannot reach due
to long radiation length.

In order to measure 2-dimensional position of the particle hit, 2 layers of scintillator ho-
doscopes are installed between the first and second module of ZDC. Twenty-one scintillator
slabs with size of 0.5× 0.5× 18 cm3 are oriented vertically and run along horizontal direction
for the x-coordinate in one hodoscope and 3 neighboring slabs are read out by single channel
of multi-anode PMT. The other hodoscope consists of 32 slabs which are oriented horizontally
and run along vertical direction for the y-coordinate and 4 slabs group for single channel.
Therefore 15 channels are read out in total for hodoscopes in each ZDC. The position of the
particle hit is obtained by taking center of gravity weighted by the energy deposit in each
scintillator. The position resolution for hadronic shower is still under discussion. Bad resolu-
tion causes dilution in AN in terms of PHENIX local polarimeter described in Section 2.2.3.
However, to know only longitudinal component of the beam polarization, such systematic
uncertainty can be canceled by comparing the asymmetries with the spin rotator on and off.

In addition to the role of PHENIX local polarimeter, the event vertex is obtained using
both north and south ZDC in the same way as BBC, though the resolution is worse than that
of BBC. The vertex resolution by ZDC is ∼30 cm online and ∼10 cm offline. The coincidence
of both ZDC hits with a certain vertex range selected is one of the trigger inputs in the data
taking. The number of this trigger is recorded by a scaler as well and is important as the
reference to that of BBC in the analysis of relative luminosity (see Section 3.4). The energy
threshold applied for the trigger is ∼5 GeV for each ZDC, while it is 20 GeV for the local
polarimeter to select neutron events.

2.3.4 Electromagnetic calorimeter (EMCal)

In the central arm, the outermost part from the collision point is covered by electromagnetic
calorimeters (EMCal). The energy of photons and electrons can be measured by use of EM-
Cal, while it is hard to determine that of hadrons due mainly to small nuclear interaction
length (∼1). As well as the energy, the time-of-flight (ToF) of the particles between EMCal
and the event vertex, which is used for the particle identification, is measured. As described
in Section 2.3.2, the start time at the event vertex is determined by BBC. Moreover, because
PHENIX EMCal is finely segmented both along the beam axis and along azimuthal direction,
the position of the particle hit can be also obtained by estimating the center of the electro-
magnetic or hadronic shower from the energy distributed between adjacent segments. We call
this segment “tower”. Though the track of charged particles is determined by inner tracking
chambers with better accuracy than EMCal, the matching between the track by the chambers
and the hit position by EMCal is helpful to separate photons, electrons and charged hadrons.
Technically, since the energy of the incident particle is distributed over several neighboring
towers, it is necessary to reconstruct the cluster from the energy deposited in each tower.
In this process, the profile of the shower is obtained and useful for the separation of the
electromagnetic shower and the hadronic one. Such a procedure is described in Section 3.5.2.

EMCal is constructed for both central arms and its acceptance covers full arms; from
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−0.35 to +0.35 in pseudorapidity and 90 degrees (33.75 – 123.75 degrees) in azimuthal angle
in each arm. EMCal is divided into 4 sectors in each arm. Each sector covers 22.5 degrees
in azimuthal angle and same pseudorapidity region as the central arm. In terms of the size
of its surface, each sector has about 4 m along the beam axis and 2 m along the azimuthal
direction. In this thesis, we name EMCal sectors in the west (east) arm W0, W1, W2,
W3 (E0, E1, E2, E3) from bottom to top. Two kinds of electromagnetic calorimeters are
used in PHENIX; lead-scintillator sampling calorimeter (PbSc) and lead-glass Cherenkov
calorimeter (PbGl). PbSc is adopted for all sectors in west arm and upper 2 sectors in east
arm (W0 – W3, E2 and E3), while rest 2 sectors (E0 and E1) is PbGl. The distance from
the collision point to each sector is slightly different between PbSc and PbGl, 507 cm for
PbSc and 540 cm for PbGl, because an additional detector for the ToF measurement [90] is
installed in front of PbGl. The features of PbSc and PbGl are very different and summarized
in Table 2.2. Total EMCal consists of 24768 towers (channels), and the deposit energy and
the signal timing of each tower are read out using PMT and recorded. The energy measured
by EMCal is utilized for a trigger to collect high energy photons, which are of interest to
the study of the gluon polarization in the proton as well as the examination of QCD via the
cross section measurements. Specific features of PbSc and PbGl, the readout electronics and
trigger scheme are described in following sections.

Quantity PbSc PbGl

Radiation length (X0) 2.1 cm 2.8 cm
Moliere radius ∼3.0 cm 3.7 cm
Nuclear interaction length (λI) 44 cm 38 cm
Total η coverage 0.7 0.7
Total φ coverage 90 + 45 degrees 45 degrees
Number of sectors 6 (W0–W3, E2, E3) 2 (E0, E1)
Size of sector surface 2 × 4 m2 2 × 4 m2

Number of towers in one sector 36 × 72 48 × 96
Tower cross section 5.5 × 5.5 cm2 4.0 × 4.0 cm2

Tower η × φ coverage 0.011 × 0.011 0.008 × 0.008
Tower depth 37.5 cm 40.0 cm
Tower depth in X0 18 14
Tower depth in λI 0.85 1.05

Table 2.2: Design parameters of PbSc and PbGl.

Lead scintillator calorimeter (PbSc)

Each PbSc tower consists of 66 layers of alternating tiles of lead and plastic scintillator. The
scintillator based on polystyrene contains 1.5% of p-Terphenyl and 0.01% of POPOP (p-bis[2-
(5-phenyloxazolyl)]-benzene). The thicknesses of the lead and the scintillator are 0.15 cm and
0.4 cm, and the total active depth of the tower is 37.5 cm. The cross section of the tower,
which corresponds to the size of the tiles, is 5.5 cm by 5.5 cm. Each tile has 36 tiny holes
at the same position in all tiles and wavelength shifting fibers penetrate the tiles through
the holes. The fibers are gathered at the rear of the tower and attached to a PMT. The
light from the scintillators is propagated in the fibers and read out by the PMT. To alleviate
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the effect of attenuation in the fibers, two fibers penetrating tiles are connected at the front
of the tower. Therefore, though the scintillation light originates from a certain tower depth
depending on the energy and species of the incident particle, it always travels through both
long and short path in the fibers. Mechanically, 4 towers which are optically isolated form the
basic structure of PbSc named “module”. A cutaway figure of the PbSc module is displayed
in Figure 2.11. Thirty six modules, 6 in width and 6 in height, are assembled into one rigid
structure named “supermodule”, which is the unit for the readout electronics. Finally, one
sector consists of 18 supermodules, 6 along the beam axis and 3 along the azimuthal direction,
and includes 2592 towers.

Wavelength
shifting fibers

Attached
to PMTTower axis

P
a
rt

ic
le

s

Fiber for
laser system

Figure 2.11: The module of PbSc. One module consists of 4 towers. The fiber for the laser
system is inserted at the center of the module and along the tower axis.

A laser-based system is implemented for PbSc to monitor a possible shift of the gain from
the signal voltage to the energy. This also contributes on determining the initial energy-
gain coefficients at the experiment. A high power YAG (yttrium aluminum garnet) laser is
used for this system. The light from the laser is propagated through fibers into each PbSc
module after being split at three stages; the original laser to 6 sectors, each sector to 18
supermodules and each supermodule to 36 modules. On each stage splitting light, the light is
additionally split and its amplitude is monitored by a PMT and photodiodes to calibrate the
laser itself. At terminal, each fiber is inserted into the center of the module and penetrate
the module along the tower axis. Hence, 4 towers in same module simultaneously detect the
light via same fiber. The fibers in the modules are mechanically processed to simulate the
real electromagnetic shower. The signals of the laser with various intensities and delays are
continuously measured during the data taking period. The time dependence of the energy
gain is corrected tower by tower assuming that the shift of the energy gain is reflected on
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the deviation from the normal in the measured amplitude of the laser signal. The timing
scale and offset is also determined by the signal with delay as well as the dependence of
the timing on the signal amplitude using the laser with various intensities. The correction
and the calibration are performed semi-online. The residual effect on the energy gain is
corrected in the offline analysis and the detail is described in Section 3.5.6. We must note
that the corrections of the timing offset and its amplitude dependence do not work well in
the 2005 run. However, it is not a crucial issue in our analysis and the detail is described in
Section 3.5.5.

To determine the initial energy-gain coefficients, following procedure was adopted. At
first, the PbSc towers were placed with the tower axis horizontal and cosmic ray muons
were measured at the same time as the laser signal. In this stage, the relation between the
laser amplitude and the deposit energy by muons (∼38 MeV, unknown in this stage), which
penetrate the tower almost orthogonally to the tower axis, was determined. The deposit
energy of muons were in turn determined at a test experiment with electron beam, where the
data of cosmic ray muons were taken simultaneously. Finally at the construction, 48 towers
with similar energy-gain were grouped because the available high-voltage equipments provide
common value over 48 channel. The fine-tuning for the energy-gain is applied by the variable
gain amplifier on the readout electronics and its initial gain were determined using the laser
system.

The performance of PbSc was evaluated by the test beam. The test experiments were
performed using electron beam at AGS in BNL and SPS (Super Proton Synchrotron) in
CERN. The linearity in the energy was guaranteed 2 – 80 GeV within 1% order and the
small deviation is well understood in terms of the effect from the fiber attenuation and the
mechanical structure of the tower. The measured energy resolution (∆E) is displayed in
Figure 2.12. As displayed as red curve in Figure 2.12, the energy resolution is well described
by

∆E

E
=

8.1 %
√

E(GeV)
⊕ 2.1 %, (2.1)

where E is energy in GeV and ⊕ means quadratic sum. A fit to a function with simple sum,
instead of quadratic sum, is also performed and shown as blue curve in the figure, but it
slightly disagrees with data at the low energy region. The position resolution (∆x) depends
on the incident angle of the beam due to the fluctuation of the shower depth. It is expressed
as

∆x = ∆x0 ⊕ L sin θ, ∆x0 = 1.55 mm ⊕ 5.7 mm
√

E(GeV)
, (2.2)

where L ∼ X0(= 21 mm) and θ is the angle between the PbSc tower axis and the direction of
the incident particle. These results are well reproduced by GEANT simulation. At the same
beam time, the response to the proton and charged pions with momentum of a few GeV/c
was studied. Only a part of the total energy is deposited in PbSc because of the small nuclear
interaction length of 0.85. MIP (minimum ionizing particle) energy for the charged hadrons
penetrating the tower is measured to be 270 MeV. Figure 2.13 displays the resolution of the
ToF measurement for electrons, pions and protons. The resolution at more than 0.5 GeV in
the deposit energy is almost constant, ∼270 psec for pions and ∼120 psec for electrons and
protons. The difference of pions and the others is mainly from the shower fluctuation. The
fluctuation of energy deposit for pions with 1 GeV/c is large; sometimes MIP and sometimes
totally deposit. This results in the worse time resolution because light generated near PMT is
faster than that generated at the surface of EMCal by ∼200 psec. Meanwhile protons nearly
deposit total energy at 1 GeV/c.
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Figure 2.12: The energy resolution of PbSc
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Figure 2.13: ToF resolution of PbSc as a
function of the deposit energy in the tower.

Lead glass calorimeter (PbGl)

Two of 8 EMCal sectors, E0 and E1 are occupied by lead glass calorimeter (PbGl), which was
previously used in WA98 experiment at CERN [91]. PbGl utilizes the Cherenkov radiation,
which is emitted in the lead glass block and detected by a PMT. The PMT is attached for
each tower and energized individually. The lead glass contains 51% of lead oxide and has a
refraction index of 1.648 and a density of 3.85 g/cm3. The size of the block for each tower
is 4.0 × 4.0 × 40.0 cm3, and the depth corresponds to 14 radiation length and 1.05 nuclear
interaction length. Individual lead glass is wrapped with aluminized mylar and shrink-tube.
An array of 6 × 4 towers forms a mechanical unit, named “supermodule”. One PbGl sector
consists of an array of 16×12 supermodules, which is therefore 96 towers along the beam axis
and 48 towers along the azimuthal direction. In the same way as PbSc, an array of 12 × 12
towers, which is 2 × 3 supermodules, are read out by a single electronic module, which is
described later in this section.

Towers in the same supermodule share a system for the calibration and the monitoring
using LED (light-emitting diode). Figure 2.14 displays the structure of the supermodule
with the LED system. An aluminized plastic mirror-foil and polystyrene reflective cover are
attached on the front of the supermodules and the LED board is enclosed in the reflective
cover. The light from the LED enters each tower through the hole on the mirror-foil and
the wrap of the tower. The intensity of the LED light is monitored by the photodiode with
preamplifier, which is attached to the reflective cover. The basic idea for the calibration and
monitoring system is same as PbSc. The LED signal detected by the PMT is normalized
by the photodiode and the gain of the PMT is corrected based on the fluctuation of the
normalized amplitude. Three kinds of LED are implemented in this system. One is the
yellow LED with a fixed amplitude and it simulates the shape of the real electromagnetic
shower. Other two is yellow and blue, which allows various amplitudes. The initial absolute
calibration was adjusted using 10 GeV electrons at the CERN X1 beam line in Fall 1993 and
Spring 1994, where the amplitude of the LED signal was related to the energy equivalent.
In the experiment at PHENIX, the corrections by the LED system were applied semi-online
and further calibration was performed offline. See Section 3.5.6 about the offline calibration

52



and the final performance of EMCal for this thesis.
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Figure 2.14: The schematic view of the supermodule of PbGl including the LED system for
the calibration. The supermodule consists of 24 towers.

The intrinsic performance of PbGl was evaluated with the test beams of AGS at BNL
as well as SPS at CERN. The obtained energy resolution for the electromagnetic shower is
displayed in Figure 2.15. No significant dependence on the incident angle was observed and
the energy resolution is well described as a function of the incident energy as

∆E

E
=

5.9 %
√

E(GeV)
⊕ 0.8 %. (2.3)

The position resolution for electromagnetic shower was also measured and parameterized as

∆x =
8.4 mm

√

E(GeV)
⊕ 0.2 mm. (2.4)

The resolution of ToF is estimated for the positron as well as the pion. and is displayed
in Figure 2.16. The resolution is described as a function of the deposit energy and there
is small difference between positrons and pions. In the region of the deposit energy more
than 1 GeV, the resolution is below 200 psec. One complicated issue of ToF is that ToF
for hadrons is faster than that for the electromagnetic shower by about 800 psec, because
the hadronic shower typically arises at the deep area of the PbGl tower due to the small
nuclear interaction-length. In this thesis, however, due to the mis-calibration in ToF of PbSc
as remarked in the section of PbSc, a loose cut is applied even for ToF of PbGl to uniform
the condition of the analysis. The detail is described in Section 3.5.4.
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Figure 2.16: The ToF resolution of PbGl as
a function of the energy deposit.

One of the features of PbGl is the difference of the response to electrons/photons and
that to hadrons, which is based on the fact that PbGl is the Cherenkov detector. In addition
to the small nuclear interaction-length of PbGl, the deposit energy is suppressed for hadrons
due to its high Cherenkov threshold; 715 MeV/c for protons and 106 MeV/c for pions,
as well as 81 MeV/c for muons. The response to hadrons were also examined with test
beams. For example, the deposit energies of protons and pions with 1 GeV/c are ∼80 MeV
and ∼460 MeV, and those with 4 GeV/c are ∼540 MeV both, where the energy scale is
normalized for electrons.

EMCal front end electronics (FEE)

Signals from each PMTs are processed on the front end electronics (FEE) and finally con-
verted into the energy and ToF, as well as the flag for the high-energy photon trigger. Fig-
ure 2.17 displays the schematic of the analog part of FEE. The most part to process the
analog signal is executed by ASIC (application specific integrated circuit) chip with the in-
put voltages at the point A and B in Figure 2.17. The single ASIC chip deals with signals
from 4 adjacent towers forming 2 × 2 block, which is the minimum unit to provide the trig-
ger. The output of the analog part is then digitized at the next step, which consists of AMU
(analog memory unit) and ADC (analog-to-digital converter). A series of these processes
is performed individually for 12 × 12 towers by a front end module (FEM), which includes
boards for the controller and the trigger in addition to several boards for the actual processes.

At the input of the signal, a 93 Ω register and 500 pF capacitor are coupled serially, and
+4 V bias voltage is applied with a large register to allow the negative current from the
PMT. Therefore, the voltage profile at the point A simply follows the current profile from
the PMT, whose rise time is less than 5 nsec, and is insensitive to the base shift. This fast
voltage pulse is used for ToF measurement. The pulse is discriminated, where the threshold
voltage is remotely assigned via ARCNet (attached resource computer network), and then
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Figure 2.17: The diagram of the analog part of FEE. One ASIC chip deals with 4 signals
from PMTs of 2 × 2 towers. In the figure, only the process for one PMT is displayed.

starts the ramp generator. The constant current from the ramp generator is stored into a
capacitor until it is turned off by the RHIC beam clock. Hence, this stored charge provides
TAC (time-to-amplitude converter) with the common stop mode. Since the time interval
between a particle hit on the EMCal and the RHIC clock is measured in the EMCal FEE,
the difference of the RHIC clock and the actual collision time, which is obtained by use of
BBC, is subtracted from the value of EMCal afterward in the offline analysis.

At the point B which is the input for the energy measurement, the voltage follows the
charge stored in the 500 pF capacitor. Due to the long discharge time at the capacitor, the
voltage profile at B is almost a step function with the amplitude proportional to the deposit
energy, rise time of ∼100 nsec and decay time of the order of 10 µsec. This signal is amplified
by a VGA (variable gain amplifier), where the gain can be remotely assigned with the factor
of 4 – 12 and the resolution of 5 bits. It is important to uniform the gain of the voltage to
the energy at this stage to obtain the efficient performance of the high-energy photon trigger.
The amplified signal after the VGA is then replicated into 3 identical signals. One is again
amplified by a factor of 16 and used for the energy measurement with “high gain” (HG).
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Another copy is also used without amplification for the energy measurement with “low gain”
(LG). This feature is necessary to cover the wide energy range of 20 MeV – 30 GeV with
satisfactory resolution for the purpose of the spin physics as well as the heavy ion physics.
The boundary of the valid range between HG and LG corresponds to about 1 GeV. The last
copy of the VGA output is used for the high-energy photon trigger. The outputs from 4
PMTs in the ASIC chip are summed within the chip and provide the energy sum for 2 × 2
towers. More detail about the trigger is described later in this section.

The analog outputs of TAC, the LG voltage and the HG voltage are kept without dig-
itization to wait for the decision of the global trigger. This role is played by AMUs which
is the array of capacitors. Each AMU with 64 cells for the storage is assigned to each of
TAC, the LG and the HG voltage of each PMT. The AMU samples the voltage every RHIC
clock and stores the charge in each cell circularly. Therefore, each cell is overwritten every
64 RHIC clocks or the AMU can keep the signal for 64 clocks, which is ∼7 µsec and enough
longer than the time of 4 µsec needed for the trigger decision. Once the triggering is decided,
the value in the corresponding cell is read out and converted into ADC value. These ADC
values are sent to the PHENIX DCM (data collection module). See Section 2.3.5 about the
PHENIX DAQ.

High energy photon trigger

Because the event rate at RHIC is too high to take and record every event at PHENIX, the
trigger to efficiently collect special and rare events is necessary. EMCal provides signals of
events with high energy particles, which include photons, neutral mesons and electrons from
heavy flavor decays. Basic idea of this trigger is quite simple; select events with a deposit
energy on EMCal over a certain threshold. However, since the shower generated by a particle
hit usually spreads over several towers, it is needed for the efficient trigger to sum the energy
deposits on the neighboring towers. Typically, the energy deposit in one tower is ∼20%
when a particle hits the corner of the tower, while it is ∼80% with a hit at the center. The
conceptual diagram of the actual procedure to select the events is displayed in Figure 2.18.

As described in the previous section, the energies of 2 × 2 towers are summed at first by
ASIC chip. On this stage, towers do not overlap and hence 36 energy sums of 2 × 2 towers
are produced per one FEM (12×12 towers). To eliminate the inefficiency in case of a particle
hit at the border of the 2 × 2 block, the energy sum of 4 × 4 towers is formed from four
2 × 2 energy sum, allowing the overlap of 2 × 2 regions. This enables to collect more than
90 % of the energy of a particle hit in at least one of the 4 × 4 regions. Technically, the
signal from a 2× 2 region is transmitted to three ASIC chips for the adjoining 2× 2 regions.
Therefore, one energy sum of 4×4 towers are generated in each ASIC chip using 2×2 energy
sums from three adjacent regions with own sum. This communication between ASIC chips is
relayed over FEMs and the trigger organization is seamless over the EMCal sector. Finally,
36 signals of 4×4 energy sum is obtained for one FEM. Each 4×4 energy sum, as well as the
2× 2 energy sum, is compared to a certain threshold to make a flag for the trigger. To avoid
the effect of noisy towers, which always provide a large signal due to the electrical noise, the
trigger can be masked with a unit of the FEM.

In the experiment, three thresholds are applied for the 4 × 4 energy sum. The values of
the thresholds are summarized in Table 2.3 with that for the 2× 2 energy sum. The triggers
are named “ERT4x4a”, “ERT4x4b”, “ERT4x4c” and “ERT2x2”.6 The first three triggers

6“ERT” is initial letters of EMCal RICH trigger since the overall circuit has an option to require the RICH
signal for the electron detection. However, triggers with RICH is not used in this thesis.
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Figure 2.18: The method to produce the signal for the EMCal trigger. The region of 12× 12
towers displayed in the figure are processed by one FEM. Signals of 2 × 2 energy sum are
relayed across the boundary of 12 × 12 region.

are for the 4 × 4 energy sum and the last one is for the 2 × 2 sum. These triggers are often
combined with other triggers, for example, the minimum bias trigger by BBC to require the
event vertex within 30 cm from the collision point. In the analysis, the trigger of ERT4x4c
with BBC is used. See Section 2.3.5 for more detail about the trigger.

ERT4x4a ERT4x4b ERT4x4c ERT2x2

Threshold 2.1 GeV 2.8 GeV 1.4 GeV 0.8 GeV

Table 2.3: The energy threshold for the EMCal trigger. The threshold is compared to the
energy sum of the 4 × 4 towers or 2 × 2 towers.

It is important to note a feature of the trigger circuit. In practice, two identical integrating
units to generate the 2 × 2 energy sum are implemented in one ASIC chip, for a set of
2 × 2 towers stated another way. During the data taking, alternating circuit is active with
synchronized with the RHIC beam clock to attain the circuit with no dead time. However, this
feature causes the trigger efficiency which depends on the beam crossing due to the slight
difference of the alternating integrating unit. Concretely speaking, the efficiency of high-
energy photon trigger is different between even-numbered and odd-numbered beam crossings.
Because the crossing number is directly related to the spin assignment, this slightly different
efficiency affects the extraction of the spin dependent asymmetry. In the analysis, the data
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are processed independently between even and odd crossings.

2.3.5 Data acquisition system (DAQ)

The flow of the data taking

The data acquisition (DAQ) system of PHENIX is designed to adjust to two very different
environments of the proton-proton collisions and the heavy ion collisions. The event rate
for the minimum bias trigger at the design luminosity of RHIC varies from 500 kHz at the
former to a few kHz at the latter. In respect of the occupancy in the detectors, the number
of generated particles is several at the former and more than 5000, which derives hits in 10 %
of all detector channels, at the latter. This difficulty is overcome through the deadtimeless
front-end module (FEM) of the detectors and the triggering system.

The flow of PHENIX DAQ is displayed in Figure 2.19. The system of the triggering and
FEMs are synchronized with RHIC clock, which must be exactly same as the frequency of the
beam and is sent from RHIC to all experiments including PHENIX. MTM (master timing
module) receives the original RHIC clock and distributes it to GL1 (global level-1 trigger)
module and GTMs (granule timing module). The GL1 module manages the level-1 trigger
system. The signals of LL1s (local level-1 trigger), which is the requests of accepting the event
from individual subsystems such as BBC, ZDC, EMCal etc., are sent to the GL1 module.
After verifying no busy signals from GTMs, the GL1 module sent the accept signal to FEMs
via GTMs. Many kinds of the triggers are provided by subsystems and some of them used in
this thesis is described later. To “prescale” triggers, which is one of the important features of
DAQ, is also executed by the GL1 module. “Prescale” means scaling down triggers of high
rate to favor rare triggers of interest. The interchange between the GL1 module and FEMs
is performed by GTMs, each of which is assigned to a certain unit of detectors (granule), for
example the east DC. In addition to the trigger signal, GTMs send the mode bits to control
FEMs and the RHIC clock as well as its own clock for the data taking without beams.
Another role of GTMs is to convey the busy signals from DCMs (data collection module) to
the GL1 module.

As described in Section 2.3.4 for EMCal, the task of FEM is to process raw signals,
which includes amplification, shaping and digitization, and buffer either analog or digital
signals until the decision of the trigger. The judgment of triggering is decided within 40
RHIC clock, which is ∼4 µsec. FEMs are free from the dead time owing to this function
of the event buffering. Once a trigger is fired, the data are digitized if analog and sent to
DCMs. The specific treatment for the detector ends at FEMs and the common modules in
detectors are available for DCMs. DCMs receive the digitized signals from FEMs and perform
zero-suppression, error checking and data formatting, where zero-suppression is to compress
data by suppressing the channels with its value less than the threshold. The partitioner
collects the data of the event from DCMs and sends them with parallel streams to EvB
(event builder) composed of SEBs (sub-event buffer) and ATPs (assembly/trigger processor)
for further assembly. The busy signal of DCMs are also combined by the partitioner and
sent to GTMs. SEBs temporarily store the data of the event fragments from DCMs. The
EvB controller commands ATPs to fetch the data after the controller is noticed by SEB for
GL1 module. The data is transported from SEBs to ATPs through a 96-port gigabit switch
(ATM, asynchronous transfer mode). Upon fetching the event fragments, ATPs concatenate
them into the complete event. ATPs also provide the environment for the level-2 trigger
where events are selected based on the reconstructed events not to exceed the limit of the
data recording. However, the level-2 trigger is not needed because of relatively low event rate
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compared to the DAQ performance and therefore is not used in the 2005 run. The events
assembled in ATPs are monitored online and sent to the buffer boxes for the storage, which
the end users can access via the LINUX terminal. The data in the buffer boxes are finally
recorded in the tape storage (HPSS, high performance storage system) periodically to keep
room for further data taking.

Figure 2.19: The schematic diagram of PHENIX DAQ.

Level-1 trigger

The PHENIX detector is composed of many subsystems and many physics observables are
suggested, and hence many kinds of triggers are prepared at PHENIX. In the mechanism of
the data taking at PHENIX, three kinds of the level-1 triggers are defined; raw trigger, live
trigger and scaled trigger. The raw trigger is one which is primarily fired by the detector.
Assuming that FEMs have the feature of no dead time, the raw trigger is same as what is sent
to the GL1 module. The raw trigger is discarded when the GL1 module receives the busy
signals from GTMs, which originate in busy DCMs. The trigger surviving this stage is the
live trigger. The live time of DAQ is defined as the ratio of the number of live triggers to the
number of the raw triggers and the dead time is 1− live time. The live time was kept around
90 % in the most of the data taking period as displayed in Figure 3.4 in Section 3.2. The live
trigger is moreover prescaled to suppress the events of less interest. The trigger prescaled is
the scaled trigger and is actually sent to FEMs to convert the raw signals and reconstruct
the event. The rate of prescaling is expressed by the prescale factor. The prescale factor N
results in processing the events every N +1 live triggers. In fact, the events are collected with
many kinds of triggers at the same time. Therefore, at least one of the scaled triggers must
be fired in the recorded events. In this section, triggers used in this thesis are explained.

• BBCLL1 (MB)
In most cases, whether the event is generated by the collision of the beams is confirmed
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by measuring the event vertex. As described in Section 2.3.2, BBC provides the event
vertex along the beam axis. Meanwhile the displacement in the plane perpendicular
to the beam axis can be ignored (see Section 3.7.1). The events with the BBC vertex
within a certain region are triggered and the trigger is described as BBCLL1. The cut
for the vertex is optional and ±30 cm, which is same as the offline cut, was applied
in most of the period in the 2005 run. We decided the cut of ±30 cm base on the
measurement that the detection efficiency of BBC is sufficiently flat over the vertex
region within ±30 cm around the collision point as displayed in Figure 2.20. This
fact is especially important in the measurement of the cross section to evaluate the
absolute luminosity, while the effect of BBC efficiency is canceled in the measurement
of ALL in principle. In the measurements of the asymmetries, BBCLL1 is utilized as
the measure of the relative luminosity introduced in Section 1.11. The resolution of the
vertex measurement by BBC is estimated to be ∼5 cm online for the trigger, while it is
improved to 2 cm in the offline analysis. The prescale factor was set to ∼500 at most
depending on the luminosity. This trigger is the most basic one and the minimum bias
trigger (MB) is defined as BBCLL1 in PHENIX.
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Figure 2.20: The event vertex (z) dependence of the detection efficiency of BBC ǫ(z). Red
points are for the BBC efficiency to the proton-proton collision (probability to reconstruct
the vertex by BBC when protons are collided). Blue points shows the BBC efficiency to π0

observed by EMCal (probability to reconstruct the vertex by BBC when π0 is observed by
EMCal). Both red and blue points are normalized to 1.0 at z = 0 cm. The blue points drop
out at |z| > 40 cm because the acceptance of EMCal is masked by the material of the central
magnet.

• ZDCLL1-narrow and ZDCLL1-wide
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The event vertex can be also measured by ZDC and the events with the ZDC vertex
within a certain cut are triggered. The value of the cut is optional and two cuts,
±30 cm and ±150 cm, were adopted for the triggers in the 2005 run. The trigger with
narrow cut is named ZDCLL1-narrow and that with wide cut is named ZDCLL1-wide.
The resolution of the vertex by ZDC is ∼30 cm online and ∼10 cm offline. These
triggers by ZDC is used for the evaluation of the uncertainty in the relative luminosity
measurement. The uncertainty is estimated by comparing the number of BBCLL1 with
that of ZDCLL1-narrow and therefore the same cut of 30 cm as BBCLL1 is applied
for ZDCLL1-narrow. ZDCLL1-wide is used for the correction of ZDCLL1-narrow and
helps to reduce the uncertainty. See Section 3.4 for more detail about the analysis
of the relative luminosity. The trigger rate is lower than BBCLL1 due to smaller
acceptance. The prescale factor was about 10 for ZDCLL1-wide and fixed at 900 for
ZDCLL1-narrow.

• ERT4x4c&BBCLL1 (ERT)
The trigger to collect high energy photons is implemented in EMCal as described

in Section 2.3.4. In practice, the coincidence of BBCLL1 and the EMCal triggers
(ERT4x4a, ERT4x4b, ERT4x4c and ERT2x2) is the main triggers in photon analyses
to assure that the events are generated by the beam-beam collisions.7 In the 2005 run, it
was not needed to prescale the triggers of ERT4x4’s with BBCLL1 owing to the progress
in DAQ, while the large prescale factor was assigned to ERT2x2 with BBCLL1 due to
its high rate. For these reasons, only ERT4x4c, to which the lowest energy threshold
of 1.4 GeV in ERT4x4’s is applied, is utilized out of all EMCal triggers in this thesis.
The trigger of ERT4x4c with BBCLL1 is described as ERT4x4c&BBCLL1, or simply
ERT unless otherwise noted. ERT4x4c&BBCLL1 is mainly used to extract ALL in π0

production. Because more statistics for the region of low π0 pT were accumulated with
BBCLL1 than that with the EMCal triggers, BBCLL1 is also analyzed as complement
to ERT as well as the confirmation of no bias in the EMCal trigger.

GL1P scaler

To obtain enough statistics for the measurement of the relative luminosity, the number of
live triggers for BBC and ZDC are counted by scalers without prescaling. The scaler is
named the GL1P scaler because its design is similar to the GL1 module. Four scaler inputs
were available and the triggers of BBCLL1, ZDC-narrow and ZDC-wide were input in the
2005 run. Another channel is assigned for a few kinds of triggers which are not used in this
analysis. Each channel counts the number of the triggers crossing by crossing of the beams.
Consequently, 480 numbers (4 channels × 120 crossings) are available and 360 numbers of
the total are used in this thesis.

The counts of the GL1P scalers are recorded in 2 ways. In both ways, DAQ read out
and record the scaler data event by event and only counts for the corresponding crossing
number to the event are recorded. Hence, 4 scaler counts are recorded event by event. The
difference of the 2 ways of recording is whether the counts are summed up or not. One
is named “GL1Psum”, where the counts accumulated from the start of the data taking by
DAQ are recorded. The other is named “GL1Pres”, where the counts accumulated from
the previous readout for the corresponding crossing (or the start of DAQ) are recorded, in

7In addition, the EMCal triggers without BBCLL1 is used in the analysis of the cross section to extract
the efficiency of BBCLL1 to the particle detection in EMCal.
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other words, the scaler counts in GL1Pres are reset at the time when they are read out. In
addition to these, the scaler counts accumulated from the last event to the stop of DAQ are
also recorded for all channels and added in the analysis. In the ideal case, the GL1Psum
count for a crossing is reproduced by summing up the GL1Pres counts from the first event
to the last event. However, they sometimes do not agree since a part of the events are lost
when the raw data are processed through the analysis codes. The crossing dependence of the
difference between GL1Psum and accumulated GL1Pres is examined and nothing over the
statistical fluctuation is found (see Section A.12). In the extraction of the relative luminosity,
the accumulated GL1Pres counts are adopted because the data of other detectors are also
lost simultaneously with the data of the GL1P scaler.
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Chapter 3

Analysis

3.1 Outline

In this chapter, detail procedure of the analysis to extract Aπ0

LL is described. The relation

of Aπ0

LL and the experimental observables is described in Section 1.11. Equation (1.56) is
reintroduced below;

ALL =
1

P̄BP̄ Y

(N++ + N−−) − (N+− + N−+)R

(N++ + N−−) + (N+− + N−+)R
, R =

L++ + L−−
L+− + L−+

. (3.1)

P̄B and P̄ Y are the beam polarizations. N is the yield of π0 and L is the luminosity.
Subscripts of N and L denote helicities of the beams. R is the relative luminosity. Therefore,
what are needed to extract Aπ0

LL are the beam polarizations, the relative luminosity and
helicity-dependent yield of π0.

In the analysis, data set used in this thesis is determined based on several criteria at
first. It is described in Section 3.2. In Section 3.3, results of the beam polarization measured
by three polarimeters, which are described in Section 2.2, are summarized. Section 3.4 is
devoted to the relative luminosity. In the section, how to evaluate the relative luminosity
and its uncertainty, and results of the analysis are written. Subsequently, analysis related
to EMCal, which is most important detector for this thesis, is described in Section 3.5. It
includes quality assurance, reconstruction of π0 and calibration of energy gain and ToF. At
the last of this chapter, in Section 3.6 and Section 3.7, asymmetries in π0 production are
calculated and the systematic uncertainty is evaluated.

3.2 Data selection

In the data taking, DAQ is stopped after about 1 hour from the start of DAQ. We define
this unit as “run” and the number assigned to each run as “run number”.1 The whole
data-taking period in 2005 is always referred to as the “2005 run” to avoid a confusion.
Similarly “fill number” is assigned to each fill2 (the fill is defined in Section 2.1). This is
for the convenience in the analysis. Empirically, an hour for one run is reasonable for stable
operation of the detector, while it is not so inefficient to restart DAQ every hour. Hence, the
quality assurance of the detector is performed run by run, for example. On the other hand,

1The run number is assigned serially from the first year of the RHIC running. Therefore, the run number
in the 2005 run is from about 168000 to 180000.

2Similarly to the run number, the fill number in the 2005 run is from about 6900 to 7400.
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the asymmetries are calculated fill by fill, because the characteristic of the beam bunches,
which is the possible source of the systematic uncertainty, are correlated between runs in
the same fill. See Section 3.6.1 about the calculation of the asymmetries. Runs with some
problem in the data taking are discarded in the analysis. The criteria are as follows;

• Runs with too short data taking period are discarded because some problem is expected
in the runs.

• Runs in fills with no polarization measurement are discarded because they are unavail-
able to calculate asymmetries.

• Runs where something is wrong with the detector, such as wrong high voltage assigned
to EMCal and the GL1P scaler not working properly, are discarded.

• Runs in fills where local polarimeter observes finite transverse polarization in longitu-
dinal beam setting are discarded.

It is possible for PHENIX DAQ to collect events with multiple triggers. As described in
Section 2.3.5, two kinds of triggers are utilized in the measurement of π0; MB and ERT. One
of the remarks in the analysis using the ERT sample is that the calculation of the asymmetries
is performed with the even and odd crossing numbers separately due to the slightly different
performance of the EMCal trigger. See Section 2.3.4 about the EMCal trigger. Figure 3.1
displays the number of the crossings as a function of the run number. Only even bunches
are filled by the beam at the beginning of the 2005 run and both even and odd bunches are
filled at the end. Figure 3.2 displays the raw trigger rate of MB as a function of the run
number. Since the cross section detected by BBC is about 23 mb, the luminosity is evaluated
to be about 3 cm−2 sec−1 in the 2005 run. The inset in Figure 3.2 is the closeup of a certain
period. A series of the points is from the runs in the same fill and it indicates that the
luminosity decreases during the beam store by a factor of ∼2. It also turns out that the
luminosity is not proportional to the number of crossings collided and the accelerator still
has the capability for the development. It is impossible to record every triggered event and
the events are thinned out due to the limited DAQ bandwidth. Figure 3.3 displays the event
rate actually recorded by DAQ. The PHENIX DAQ achieves the recorded event rate of more
than 5 kHz. The typical live time of DAQ is more than 90 % as displayed in Figure 3.4.

At the online data taking, both MB and ERT require the event vertex within ±30 cm
window around the collision point, where the detection efficiency of EMCal is flat. In addi-
tion, the vertex cut of ±30 cm is again applied using the offline vertex with more accurate
resolution. The efficiency of the offline vertex cut is ∼16 %. The number of recorded events
finally used in this thesis and the integrated luminosity corresponding to the events, as well
as the average beam polarization weighted by the integrated luminosity, are summarized in
Table 3.1. The integrated luminosity used in the analysis is slightly different between ERT
and MB. The difference is about 10 %.

3.3 Beam polarization

As described in Section 2.2, the beam polarization is measured by pC polarimeter and jet
polarimeter. The former measures the polarization typically once an hour. Based on the
fact that significant depolarization is not observed during one fill, measurements in one fill
are averaged to obtain the fill-by-fill polarization. The latter polarimeter is used to calibrate
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Figure 3.1: The number of the beam cross-
ings as a function of the run number. The red
points are the number for only even crossings
and the blue points are for only odd cross-
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Int. lum. MB events ERT events 〈PB〉 〈PY 〉
ALL 2.3 pb−1 1.21×109 1.01×109 50.3 % 48.5 %
ATT 0.13 pb−1 1.14×107 4.28×107 47.2 % 51.3 %

Table 3.1: The integrated luminosity (int. lum.), the number of MB and ERT events, and
the average beam polarization (〈PB〉 for the blue beam and 〈PY 〉 for the yellow beam). The
integrated luminosity in the table is for the ERT sample and that for the MB sample is about
10 % smaller than ERT. The average beam polarizations are calculated by weighting the
polarization in each fill by the integrated luminosity for the fill. The difference between ERT
and MB sample in the polarization is negligible.
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the measurement by pC polarimeter, using whole data throughout 2005 run. In addition to
these two polarimeters, PHENIX local polarimeter determines the longitudinal and transverse
component of the polarization at the collision point.

Figure 3.5 displays the fill-by-fill polarization of the blue and yellow beam. Major contri-
bution to the systematic uncertainty comes from the position dependence of the polarization
in the beam profile; low polarization at the noncentral region of the beam. Because the po-
larization profile is more significant in the yellow beam than the blue beam, larger systematic
uncertainty is assigned to the fill-by-fill polarization of the yellow beam than the blue beam.
The average beam polarizations, PB for the blue beam and PY for the yellow beam, over all
fills weighted by the integrated luminosity accumulated by PHENIX are

PB = 0.503 × (1 ± 0.006 ± 0.051 ± 0.029) = 0.503 × (1 ± 0.059) (3.2)

PY = 0.485 × (1 ± 0.008 ± 0.054 ± 0.029) = 0.485 × (1 ± 0.062) (3.3)

for the data set with longitudinal beam polarization and

PB = 0.472 × (1 ± 0.030 ± 0.051 ± 0.029) = 0.472 × (1 ± 0.066) (3.4)

PY = 0.513 × (1 ± 0.041 ± 0.054 ± 0.029) = 0.513 × (1 ± 0.074) (3.5)

for the transverse polarization. The difference between ERT and MB sample in the polariza-
tion is negligible. The first uncertainty in the middle of the formula is calculated from the
fill-to-fill uncorrelated errors, while the second and the third error is the global uncertainty
for every measurement. The second one is uncorrelated between the blue and yellow beam
and the third one is fully correlated. The global uncertainty uncorrelated in the blue and the
yellow is again mainly from the polarization profile of the beam and statistical error of jet
polarimeter. The blue-yellow correlated global error is caused by the systematic uncertainty
on the jet polarimeter measurement. Considering the correlated error between the blue and
yellow beam, the product of the beam polarization and the uncertainty are

PBPY = 0.244 × (1 ± 0.095) (3.6)

for the longitudinal polarization data and

PBPY = 0.242 × (1 ± 0.107) (3.7)

for the transverse polarization data.
The residual transverse component of the beam polarization during the data taking with

the polarization directed longitudinally is monitored by PHENIX local polarimeter. The
results are

PB,T

PB
= 0.100 ± 0.010

PY,T

PY
= 0.146 ± 0.011, (3.8)

where the direction of the polarization is 53 degree for the blue beam and −73 degree for
the yellow beam in φ (see Figure 2.6 for the definition of φ). In terms of the longitudinal
component,

PB,L

PB
= 0.995 ± 0.001

PY,L

PY
= 0.989 ± 0.002. (3.9)

PB,T and PB,L are the transverse and longitudinal polarization, respectively, for the blue

beam, and related by PB =
√

P 2
B,T + P 2

B,L. This is same for the yellow polarization.
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Figure 3.5: The beam polarization as a function of the fill number. The left is for the blue
beam and the right is for the yellow beam. The error bars with black indicate the statistical
uncertainty and those colored by red are quadratic sum of the statistical and systematic
uncertainties.

3.4 Relative luminosity

In this section, we describe the relative luminosity and its uncertainty. In this thesis, ALL

in the π0 production is extracted using both ERT trigger and MB trigger, and the data sets
for them are slightly different. Moreover, π0 ATT is also calculated using the data set with
beam spin polarized transversely, where the relative luminosity is again necessary. Therefore
the relative luminosity also depends on which data set to use. The plots in this section are
produced using the ERT data set for ALL. The same procedure is applied for every data set
and the results are summarized in Table 3.3.

3.4.1 Basic idea

The relative luminosity is defined as R = L++

L+−
in Equation (1.56), where L++ (L+−) is

the integrated luminosity for the collisions with like (unlike) helicity beams. In principle,
measured counts by any detectors are available for R as far as they are proportional to the
integrated luminosity. However, it is preferable to satisfy the requirements,

• Less background,

• No spin dependent asymmetry observed in the acceptance of the detector,

• Appropriate acceptance; not too small to accumulate sufficient statistics and not too
large to be insensitive to multiple collisions in the single intersection of the beams,

Based on these requirements, the number of the minimum bias trigger (MB or BBCLL1) is
chosen for R (See Section 2.3.5 about the trigger);

R =

∑

i=like−helicity crossings nBBCLL1
i

∑

i=unlike−helicity crossings nBBCLL1
i

, (3.10)

where nBBCLL1 is GL1P scaler counts for BBCLL1 and i indicates the beam crossing num-
ber. The uncertainty of ALL which originates in the relative luminosity is calculated using
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Equation (1.56) to be

∆ALL|R.L. =
2(N++ + N−−)(N+− + N−+)R

PBPY [(N++ + N−−) + (N+− + N−+)R]2

(

∆R

R

)

∼ 1

2PBPY

(

∆R

R

)

, (3.11)

where NhBhY
is the yield by the collisions with helicity states of hB for the blue beam

and hY for the yellow beam. PB and PY are the polarization of the blue and yellow beams,
respectively, instead of P̄1 and P̄2 in Equation (1.56). The approximations of (N+++N−−) ∼
(N+− + N−+) and (L++ + L−−) ∼ (L+− + L−+) are used at the step from the middle to the
right side in Equation (3.11).

The uncertainty of R is evaluated by comparing the number of BBCLL1 with that of
ZDCLL1. Because BBCLL1, as well as ZDCLL1, requires coincidence of the north and south
detector, background in both BBCLL1 and ZDCLL1 is tiny and therefore the accumulated
numbers of the triggers are proportional to the integrated luminosity. In addition, the accep-
tance for ZDCLL1 is very small and the effect of multiple collisions is negligible in the current
luminosity. Hence, the effect of multiple collisions in the relative luminosity can be examined
by comparing BBCLL1 with ZDCLL1. In view of physics, since BBCLL1 and ZDCLL1 cover
much different acceptance, possible spin-dependent asymmetry in the relative luminosity is
expected to be observed and the correction is applied to the asymmetries of π0 in the case.
Therefore, when ci is defined as the ratio of ZDCLL1 count to BBCLL1 count for i-th beam
crossing, non-constant in ci over the beam crossings indicates the systematic uncertainties in
the measurement. Mathematically, the uncertainty of R is related to the average of ci over
the crossings (C) as

∆R

R
∼ 2∆C

C
. (3.12)

See Section A.5 for more detail calculation.
In this analysis, three kinds of triggers (BBCLL1, ZDCLL1-narrow and ZDCLL1-wide)

which are counted by the GL1P scaler are used (see Section 2.3.5 about the GL1P scaler).
Because the events of ZDCLL1-wide and ZDCLL1-narrow are overlapped, following variables
are defined to make statistics independent.

nBBC−in
i = nBBCLL1

i , (3.13)

nZDC−in
i = nZDCLL1−narrow

i , (3.14)

nZDC−out
i = nZDCLL1−wide

i − nZDCLL1−narrow
i , (3.15)

where nA indicates the number of the trigger A and the subscript i denotes the beam crossing
number. The crossing-by-crossing ratio of BBCLL1 and ZDCLL1 to evaluate ∆R is defined
as

ci =
nZDC−in

i

nBBC−in
i

. (3.16)

Note that the cut of the event vertex is ±30 cm in both BBC-in and ZDC-in though the
detectors have a finite resolution. Therefore these 2 triggers measure same events. In practice,
the possible spin-dependent asymmetry is assumed and the “bunch fitting” method is utilized
to check the uniformity of ci, instead of fitting ci to a constant. The bunch fitting is to fit
data to the function of the crossing number i;

fi = C[1 + ǫLLhBihY i], (3.17)

where hBi and hY i is the helicity of the blue and yellow beam for the i-th crossing. C and
ǫLL are the fit parameters. Obviously, ǫLL represents the raw double-helicity asymmetry of
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the ratio of BBCLL1 and ZDCLL1. When ǫLL is fixed to 0, the bunch fitting is same as the
constant fitting. C obtained by fitting ci to fi corresponds to the average of ci and to that
in Equation (3.12). Since the errors of C and ǫLL in the bunch fitting are roughly related as
∆ǫLL ∼ ∆C

C (see Section A.6), ∆R can be estimated from Equation (3.12) as follows;

∆R

R
∼ 2∆ǫLL. (3.18)

The analysis is processed fill by fill, because the characteristic of beam bunches is common
between runs in the same fill and its variation causes the systematic uncertainty of the relative
luminosity. Figure 3.6 displays the correlation of the vertex center and width between the
first run and the last run in the same fill. The correlation in the center of the event vertex is
not so clear, while the vertex widths are correlated between these two runs but become wider
and wider.
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Figure 3.6: The correlation in the center (left) and the width (right) of the event vertex
between the first run and the last run in a certain fill. Lines in the figures shows y = x.

3.4.2 Bunch selection

In the analysis, some crossings are discarded as bad crossings. One of the bunches in each
blue and yellow beam is always used for the tuning of the beam. Because the population
of such a bunch is usually very small compared with other bunches, they are removed. In
addition, bunches with small population which are likely to have strange vertex distribution
are removed. The threshold is set to 1/10 of the average and applied fill by fill. One other
criterion is that bunches which are far from the correlation in Figure 3.8 are discarded,
since such property implies the bunches with strange vertex distribution. The correlation in
Figure 3.8 is explained in the following section.

3.4.3 Vertex width correction

One of the sources of the nonuniformity in ci is caused by the combination of the variation
of the event vertex width and the resolution in the vertex measurement. This dependence
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on the vertex width is corrected to evaluate uncertainty of R properly. However, the vertex
width is not directly used in this analysis because of the following reason. In the typical
analysis in PHENIX, the event vertex is cut at ±30 cm to obtain the detection efficiency of
BBC which is independent of the vertex position. Therefore, the ±30 cm cut is also applied
to many of the triggers for the physics measurements to use the DAQ bandwidth efficiently.
For this reason, the events with the vertex out of the cut are limited and it is difficult to
determine the vertex width with good accuracy. Instead of using the vertex width obtained
by BBC, which is the most accurate way in PHENIX, wi is used for the correction in the
analysis for the relative luminosity, where wi is defined as

wi =
nZDC−out

i

nZDC−in
i

. (3.19)

Figure 3.7 displays the scatter plot of wi and the vertex width measured by BBC. The clear
correlation is seen between them and it assures to use wi for the vertex width.
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As described above, ci depends on wi, which is displayed in Figure 3.8. This phenomenon
is mainly due to the resolution of ZDC and can be explained as follows. The vertex distri-
bution is roughly Gaussian with a width of ∼50 cm. When the ±30 cm cut is applied for
the event vertex, some amount of the events come and go at the edge of the cut, because the
measured vertex position is smeared by the detector resolution. As the vertex width becomes
narrower and the slope becomes steeper at the edge of the cut, more events go outside the
accepted region of ±30 cm compared with the events coming into the region. Figure 3.9
displays schematic view of the effect. This phenomenon is more serious in detectors with
worse resolution. Hence the effect by ZDC is larger than that by BBC, where the resolution
in the vertex measurement online is ∼30 cm with ZDC and ∼5 cm with BBC. Consequently,
nZDC−in becomes smaller as the vertex width becomes narrower and it results in ci being
proportional to wi.
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Figure 3.9: Schematic view to explain the phenomenon that ci depends on wi. When a
certain vertex cut is applied (red line), events around the cut are smeared due to the detector
resolution (Nin and Nout). Amount of the events escaping from the window by the cut are
roughly proportional to Nout − Nin and therefore depends on the vertex width. Obviously,
the effect is larger for a detector with worse resolution.

The line in Figure 3.8 is the result of the fit with the linear function and ci is corrected
based on the function. In the correction, we do not add the error of the function to ci. By
looking at the chi-square of the bunch fitting, where only statistical error is assigned to the
points, it turns out whether the vertex width correction is effective or not. Figure 3.10 displays
the reduced chi-square of the bunch fitting before (black) and after (red) the correction. The
fitting is performed fill by fill and therefore the each entry of the red and black histogram
corresponds to the number of fills in whole 2005 run. It is seen that the reduced chi-square
becomes smaller after the correction, though it is still larger than unity. The larger chi-
square indicates the existence of unknown systematic error. Figure 3.11 displays the scatter
plot of the reduced chi-square and the statistical error of ǫLL by the bunch fitting. As
expected, the reduced chi-square of the fitting is larger as the statistics is higher and any
strange behaviors are not found. Finally, the residual nonuniformity of ci is included in the
systematic uncertainty of the relative luminosity R.

The dependence of ci described here mainly originates in the resolution of ZDC. Hence, it
is not necessary to correct nBBC−in, which is used as the relative luminosity in the calculation
of π0 ALL. However the same effect should occur in the part of BBC though it is smaller
than ZDC because of the better resolution of BBC. The size of the effect on BBC is estimated
based on the simple model calculation, where the distribution of the event vertex and the
vertex resolution of BBC and ZDC are assumed to be Gaussian. It turns out that the effect
by BBC is small and it is fully absorbed by the systematic uncertainty of R.

3.4.4 Result of the relative luminosity analysis

After the correction using wi, ǫLL for ci is calculated fill by fill. Figure 3.12 displays ǫLL as
a function of the fill number. Since the uncertainties of R are thought to be uncorrelated
between fills, following Equation (3.18), ∆R for whole 2005 run is estimated by fitting Fig-
ure 3.12 to a constant. As described above, the reduced chi-square of the bunch fitting is
still larger than unity after the vertex width correction. However, even though the large chi-
square is taken into account, the uncertainty of the relative luminosity is enough smaller than
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square is with the larger statistics as ex-
pected.

the statistical uncertainty of π0 ALL. Therefore, we don’t make further efforts to investigate
the source of the systematic uncertainty. To evaluate ∆R conservatively, point-to-point error
for ci are enlarged so that the reduced chi-square of the bunch fitting in each fill becomes
unity. The red (black) points in Figure 3.12 are after (before) the correction of the chi-square.
The results of fitting the fill dependence of ǫLL to a constant are also written in the figure.
The reduced chi-square after the fill-by-fill chi-square correction is almost unity and no fill
dependence is observed. The result of ǫLL has finite value even though the significance is
only 2 sigma. ∆R is evaluated conservatively using ǫLL instead of ∆ǫLL to be 1.83×10−4,
which is translated into 3.8×10−4 in terms of the uncertainty of π0 ALL assuming the beam
polarizations of 50 % and 48 %. This result is enough small compared to the statistical
uncertainty of π0 ALL. The comparison of with and without the vertex width correction is
summarized in Table 3.2.

ǫLL(10−5) χ2/NDF

w/o vertex corr. 2.46±2.57 599.7/103
w/o vertex corr. (χ2 corr.) 3.10±5.94 97.0/103
w/ vertex corr. 8.94±2.57 401.5/103
w/ vertex corr. (χ2 corr.) 9.17±4.79 99.2/103

Table 3.2: ǫLL and the reduced chi-square (χ2/NDF) by the constant fitting over the fills.
The reduced chi-squares become almost unity after the fill-by-fill chi-square correction.

Since the data set used in the analysis is slightly different between ERT and MB, the
result of ∆R is also different. Table 3.3 lists the results of ∆R/R for the ERT and MB
sample with longitudinal and transverse beam polarization. Figure 3.13 and 3.14 display
R as a function of the fill number. The line in the figures is R = 1. R in Figure 3.13 is
calculated using all beam crossings except for the bad bunches described in Section 3.4.2. On
the other hand, R in Figure 3.14 is obtained using only crossings of either even (red) or odd
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Figure 3.12: ǫLL as a function of the fill number. The points are obtained after the vertex
width correction. The error bars of the black points are only statistical, while those of the
red are enlarged to make the reduced chi-square of the bunch fitting unity in each fill. The
line indicates ǫLL = 0.

(blue) crossing numbers, for the calculation of ALL is performed with the even and the odd
crossing numbers separately for the ERT data set because of the specification of ERT (see
Section 2.3.4 about the EMCal trigger).

ǫLL(10−5) χ2/NDF ∆R
R (10−4)

MB longitudinal 9.67±4.96 94.2/100 1.93
MB transverse 58.1±21.7 2.01/3 11.62
ERT longitudinal 9.17±4.79 99.2/103 1.83
ERT transverse 56.3±20.9 2.08/3 11.26

Table 3.3: ǫLL, the reduced chi-square (χ2/NDF) and ∆R/R for the data sets used in this
thesis. ǫLL instead of ∆ǫLL is used to evaluate ∆R/R.

Some of the reasons of the residual nonuniformity in ci are considered. The candidates are
the resolution of BBC as well as ZDC, more complicated shape of the event vertex distribution,
time dependence of the event vertex and the multiple collisions in a single intersection of the
beam bunches. Though the effects from these are included in ∆R, we describe about the
estimation of the multiple collisions at the end of this section.

Considering that the high intensity in a single bunch of beam is likely to cause the multiple
collisions, the problem occurs in the fill with the small number of crossings and high trigger
rate. As displayed in Figure 3.1 and 3.2, the serious case is ∼80 kHz of MB in the fill with
∼50 crossings. Roughly assuming the BBC detector acceptance of 50 % and the efficiency of
the ±30 cm vertex cut of 50 %, the actual collision rate is ∼320 kHz. While a single bunch
intersects a bunch of the other beam at the collision point with 78.2 kHz using the RHIC
circumstance of 3834 m. Therefore, the probability of the collisions per a single intersection of
beams is 320k

78.2k×50 = 8.2 %. This probability of 8.2 % includes both the signle collision and the
multiple collisions because BBC cannot separate them. When the multiplicity of the collision
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Figure 3.13: The relative luminosity as a
function of the fill number. All crossings are
used for the extraction. The error bars are
smaller than the size of the points.
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Figure 3.14: The relative luminosity as a
function of the fill number. The values are
extracted with even (red) and odd (blue)
crossings separately. The error bars are
smaller than the size of the points.

follows the Poisson distribution, the probability of the multiple collisions is calculated to be
0.34 % per a signle intersection, which is 4.2 % of all events with collisions. See Section A.7
about the detail calculation.

If this effect contributes to the false asymmetry maximally, the size is 4.2 %
PBPY

where PB

(PY ) is the blue (yellow) beam polarization. However, if the rates of the multiple collisions
are same in all crossings, they do nothing in the π0 ALL calculation. For example, even if
the rate is different by 20 % between the crossings for like- and unlike-helicity collisions, the
size of the false asymmetry becomes smaller by a factor of 10. In fact, the rate is higher in
like-helicity crossings at times and in unlike-helicity crossings at other times. Consequently,
the bias of the collision rate is well randomized over the whole 2005 run. Moreover, it must
be emphasized that the uncertainty of R is evaluated by comparing with ZDCLL1. Due to
the much smaller acceptance of ZDC than BBC, the luminosity measurement by ZDC is less
affected by the multiple collisions. Since the trigger rate of ZDCLL1-narrow is 2 kHz at
most and it means that ZDC detects only 1.25 %(= 2 kHz/160 kHz) of the collisions within
±30 cm vertex cut, while BBC detects ∼50 %. In the same calculation as BBCLL1, the
probability of the multiple collision for ZDCLL1 is 0.026 % per all events with the collisions.
The effect caused by this level of the multiple collisions is negligible compared to the present
precision of π0 ALL. Eventually, the effect of the multiple collisions to the relative luminosity
is absorbed in ∆R by requiring the uniformity in ci.

3.5 Performance of EMCal

3.5.1 Performance of ERT

This analysis utilizes two triggers; MB and ERT. ERT collects the events when the energy
measured by EMCal is more than a threshold of 1.4 GeV. In addition, ERT also requires MB
fired. The extraction of the asymmetries is not affected by the performance of the trigger
because the performance should be independent of the physical state of the beam helicity. As
an exception, one thing to be careful is the specific feature of the electrical circuit for ERT,
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where alternative circuit is assigned to every other beam crossings. Due to this feature, the
asymmetry using ERT must be calculated for the even and the odd beam crossings separately.
See Section 2.3.4 and 2.3.5 about ERT. Though the detail study of the trigger performance
is not needed in this thesis, a brief review of ERT is useful and is described in this section.

The performance of ERT is evaluated by monitoring the rejection power. The rejection
power for ERT is defined as NMB/NERT, where NMB and NERT are the number of MB and
ERT events, respectively, without prescaling. The ratio must be calculated using the data
taken in the same period. Figure 3.15 displays the rejection power as a function of the run
number. Since ERT requires MB, the rejection power of ERT indicates how much events are
suppressed by the EMCal trigger (ERT4x4c). The average of the rejection power is about 60,
which means that the events are reduced by a factor of ∼60. The fluctuation of the rejection
power is mainly from the electrical noise of EMCal. Because the towers with terribly frequent
noise always fire ERT and decrease the rejection power, the regions including such towers are
masked in the trigger during the data taking period. However, the remaining towers, which
is not so noisy and can be discarded in the offline analysis, cause the time dependence in
the rejection power. Other reason of the fluctuation of the rejection power is related to the
cleanness of the beam. The beam gas background tends to be larger when the number of
beam crossings is larger. Therefore the rejection power of ERT is correlated to the number
of the crossings (see also Figure 3.1).
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Figure 3.15: The rejection power of ERT as a function of the run number.

The efficiency of ERT as a function of the cluster energy on EMCal is displayed in Fig-
ure 3.16 for PbSc and PbGl separately. See Section 3.5.2 about the clustering. The efficiency
in Figure 3.16 is defined as the fraction of the clusters which fire ERT in all clusters. The
slope where the trigger is turned on is understood by the variation of the tower-by-tower
pedestals and gains in the energy measurement. The efficiency flats and becomes about 90%
at more than 3 GeV in both PbSc and PbGl. The inefficiency at the flat region results from
the region in which ERT is disabled due to the electrical noise. Figure 3.17 displays the ERT
efficiency for the π0 detection as a function of π0 pT . The efficiency in Figure 3.17 is defined
as the fraction of π0s whose decay photon with higher energy fires ERT in all π0s measured
by use of EMCal. The efficiency becomes constant at more than 4 GeV/c. The efficiencies
for π0s at the flat is consistent with those for the single clusters in Figure 3.16 within an
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uncertainty of 1 %.

Cluster energy (GeV)
0 1 2 3 4 5 6

E
ff

ic
ie

n
cy

0

0.2

0.4

0.6

0.8

1

PbSc (88.9 % at plateau)

PbGl (91.7 % at plateau)

ERT trigger efficiency for the single cluster

Figure 3.16: The ERT efficiency as a func-
tion of the cluster energy. The red one is
for PbSc and the blue one is for PbGl. The
error bars on the points show only the sta-
tistical uncertainty. The points are fitted to
a constant using the energy range more than
3 GeV and the results are displayed as the
red and blue line.
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Figure 3.17: The ERT efficiency as a function
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points show only the statistical uncertainty.
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pT range more than 4 GeV/c and the results
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3.5.2 Clustering on EMCal

As described in Section 2.3.4, EMCal is segmented into towers. The energy deposited by
a particle hitting EMCal is distributed over several neighboring towers. Therefore, it is
necessary to reconstruct the energy of the incident particle from the energies in the towers.
At the same time, the position of the particle hit is also obtained from the distribution of the
energies in the towers.

At the beginning to reconstruct energy and hit position of the incident particle, towers
with the energy deposit more than a certain threshold are picked up. The threshold was set
to ∼0.010 GeV for PbSc and ∼0.014 GeV for PbGl. The higher threshold for PbGl than
PbSc is due to larger noise in PbGl than PbSc. In 2005 run, the noise of EMCal was about
0.007 GeV for PbSc and 0.010 GeV for PbGl in RMS. After applying energy threshold to
every tower, the regions of geometrically continuous towers with energy deposit are formed.
Assuming the possible case that more than 2 particles hit near positions on EMCal, when
n towers in the single region locally have a energy peak, the region is divided into n pieces.
Such regions, which have been split if necessary, are named “cluster”s. Therefore the cluster
has only one peak energy tower.

Figure 3.18 displays the multiplicity of the hit towers in the clusters. In this figure,
the photon-like clusters are selected using the photon probability as described below. As
expected, the multiplicity increases as the cluster energy becomes higher. The long tail in
the high multiplicity region in the low energy clusters is assumed to be caused by hadrons
whose shower spreads widely than the electromagnetic shower. For this reason, the tail is
significant in PbSc while such a component is small in PbGl which is insensitive to hadrons
(see Section 2.3.4 about EMCal). The multiplicity of PbSc is slightly higher than PbGl
because the energy threshold to each tower is slightly higher in PbGl.
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Figure 3.18: The multiplicity of the hit towers in the clusters. The left figure is for PbSc and
the right is for PbGl. Black, red and blue histograms are for 0.1 – 2.0 GeV, 2.0 – 5.0 GeV
and more than 5 GeV in the cluster energy.

The process to reconstruct the energy of the cluster is different in PbSc and PbGl. In
PbGl, all energies in the cluster are simply summed and the total energy is corrected for the
dependence on the impact angle of the incident particle. On the other hand, the energies
in the core towers are summed in PbSc. The core towers are defined as those in which
the incident particle is estimated to deposit the energy more than 2 % of the total. This
estimation is based on the ideal electromagnetic shower profile, which is parameterized in the
test beam experiment. Roughly, more than 90 % of the total energy is observed in the core
towers. The energy summed over the core towers is corrected for the impact angle dependence
as in PbGl. In addition, the energy loss by the attenuation in the fibers to propagate the
scintillation light is corrected in PbSc. In both PbSc and PbGl, the energy between the
incident photon and the reconstructed cluster is not linear in the low energy region due to
the energy threshold to towers. The non-linearity is evaluated in the offline analysis and
corrected. See Section 3.5.6 about the non-linearity correction.

The position of the particle hit is obtained as follows. At first, the cluster position is
simply obtained as the center-of-gravity of the tower position weighted by the energy in each
tower. However, following the profile of the electromagnetic shower in EMCal, the position
calculated by the center-of-gravity is systematically shifted from the real position. Therefore
the shift is corrected in the next step. Then, the dependence on the impact angle of the
particle is corrected. The way to extract the position is almost same in both PbSc and PbGl,
but the parameters in the calculation is different due to the different detector.

The timing information is also recorded in EMCal and it is used for the particle identifi-
cation. In this analysis, the timing of the tower with the maximum energy deposit is used as
the timing of the particle hit.

One of the important values in this analysis is the photon probability. It is the probability
that the cluster is produced by the photon and obtained by comparing the ideal shower
profile and the actual energy sharing in the cluster. In practice, the chi-square between
the distribution of the energies and the ideal profile is calculated and translated into the
probability using the number of the towers in the cluster as the degree of freedom. Ideally,
the cut at the probability p for the cluster results in the efficiency of p for the photon and
this is independent of the cluster size, energy and position.
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3.5.3 Quality assurance of the EMCal towers

EMCal consists of many towers and a certain amount of them acts unordinary behavior.
Such towers are roughly categorized into 3 groups. One is the dead towers, whose response
is too poor and almost no signals are observed from them. Other one is the noisy towers,
which send meaningless signals of the electronic noise with high frequency. The last one is
the not-calibrated towers, for which the tower-by-tower offline calibration using π0 peak is
failed. Most of them have the problem of the electronics or the broken PMT. Some of them
have the software problem, such as the improper gain coefficient assigned, and fake the noisy
or dead towers. These unavailable towers are named “bad tower”. In consideration of the
shower spreading over several towers, the region of the bad towers and 3×3 towers around the
bad towers are named “warn towers”. In addition to these, towers with successful calibration
but with not good π0 spectrum are included in the warn towers, but towers around them
are not included. The warn towers are masked and not used in this analysis. As well as the
warn towers, towers at the most edge of the EMCal sectors (“edge towers”) are masked too,
because the shower leaks out of EMCal and a part of the energy is lost. In this section, the
process to find the warn towers is described for first 2 categories; the dead towers and the
noisy towers. The last one about the not-calibrated towers is described in Section 3.5.6.

To determine the dead and noisy towers, the tower-by-tower frequency to find the cluster
hitting the tower is examined. Towers with too low or too high frequency are assigned as the
dead or noisy tower. The determination of the dead tower is simple and the tower with the
frequency less than 10 over all the 2005 run are labeled as the dead tower. The number of
the dead towers is 9. On the other hand, finding the noisy towers is a little bit different. At
first, the distribution of the frequency is produced sector by sector of EMCal, for the energy
windows with 1 GeV step, and for the ERT and MB samples each. The minimal threshold
of 0.1 GeV, which is same value at the final asymmetry calculation, for the cluster energy
is applied. It is also required that ToF is in valid range (not an overflow) for the clusters
with active ToF module, where EMCal towers whose electric circuit is broken for ToF while
is working correctly for the energy measurement are considered. Figure 3.19 displays the
example of the distributions, which is for sector W0 and the energy range of 2.0 – 3.0 GeV
using ERT sample. Then, the frequency distribution is fitted to Gaussian and towers which
are far from the mean value by more than a certain sigmas are labeled as the noisy tower.
The threshold is applied depending on the cluster energy. It is 10 sigmas in the energy
region more than 1 GeV while 20 sigmas at less than 1 GeV to keep the statistics. In the
low energy region, electric noise have a large effect and the tower-by-tower fluctuation of the
ERT threshold is effective for the ERT sample in addition to the noise. Finally, the towers
once tagged as the noisy tower in any energy range and any trigger samples are assigned as
the noisy tower. Therefore, we adopt only one noisy/dead tower map for any data samples.
It’s to be noted that the threshold in this analysis is relatively loose compared with other
study like direct photon measurement because π0 is clearly identified by the reconstruction
of the invariant mass.

In practice, finding the noisy towers is performed twice. The first is done before the
energy calibration of EMCal because the noisy towers must be excluded to reconstruct π0

for the calibration. The second is after the calibration because some towers are masked at
the first step due to the mis-calibration as described above. Figure 3.20 displays the results
of the warn and edge towers in this analysis. The number of the warn and edge towers are
summarized in Table 3.4. The percentage of the masked towers in whole EMCal is 15.8 %.
About half of the masked towers are the edge towers and the rest is the warn towers. The
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Figure 3.19: The tower-by-tower hit frequency for W0 sector and 2 – 3 GeV in the cluster
energy using the ERT sample. The entries of the blue histogram consist of all towers in
the sector. The peak around 0 of the blue one is from the 12 × 12 towers where ERT is
disabled due to the noisy towers. The black histogram is produced excluding the towers in
the ERT-disabled region and is used for the fitting to Gaussian (red curve). The threshold to
determine the noisy towers is 10 sigma in this sample and is indicated by the red line around
6000. The tower for the highest entry in the blue histogram is masked as the warn tower.

bad towers are about 2.5 % of total. This means that about 70 % of the warn towers are not
actually bad but excluded because their neighbors are bad towers.

3.5.4 Reconstruction of π0

π0 is the signal for this study. Moreover, its measured peak position and width in the
mass spectrum are utilized for the calibration and the quality assurance of EMCal. π0s are
measured by detecting two photons from its decay by use of EMCal. In the analysis, any
pairs of the clusters on EMCal are selected and the invariant mass of them is calculated using
measured energy and hit position. The 4-momentum square for every cluster is regarded as
zero in the calculation. Then, the peak of π0 is observed on the continuous background in
the invariant mass spectrum. Several criteria are applied to the clusters or the pairs mainly
to reduce background and make clear peak. The criteria are listed as follows.

• Minimal energy threshold
Because the clusters with too low energy are affected by the electrical noise, the min-
imal energy threshold is applied to the clusters. The threshold for the cluster energy
is 0.1 GeV for both PbSc and PbGl. In addition, the tower-by-tower threshold of
∼0.010 GeV for PbSc and ∼0.014 GeV for PbGl is applied in the clustering as described
in Section 3.5.2. The tower-by-tower threshold causes the non-linearity between the in-
cident energy and the reconstructed energy. This non-linearity is corrected as described
in Section 3.5.6.

• Warn and edge towers
Clusters which hit on the warn or edge towers are discarded. In the case of the cluster
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Figure 3.20: The masked towers. Eight histograms correspond to EMCal sectors. The
horizontal axis is the order of the tower parallel (antiparallel) to the beam axis in the east
(west) arm. The vertical axis is the order of the tower along the y-axis. The red towers
correspond to the warn towers and blue towers are edge towers. Both red and blue towers
are masked in the analysis.
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sector bad towers warn towers edge towers masked towers total

W0 14 (0.5 %) 77 ( 3.0 %) 212 (8.2 %) 289 (11.1 %) 2592
W1 8 (0.3 %) 16 ( 0.6 %) 212 (8.2 %) 228 ( 8.8 %) 2592
W2 22 (0.8 %) 72 ( 2.8 %) 212 (8.2 %) 284 (11.0 %) 2592
W3 100 (3.9 %) 357 (13.8 %) 212 (8.2 %) 569 (22.0 %) 2592
E0 192 (4.2 %) 702 (15.2 %) 284 (6.2 %) 986 (21.4 %) 4608
E1 81 (1.8 %) 393 ( 8.5 %) 284 (6.2 %) 677 (14.7 %) 4608
E2 87 (3.4 %) 251 ( 9.7 %) 212 (8.2 %) 463 (17.9 %) 2592
E3 115 (4.4 %) 214 ( 8.3 %) 212 (8.2 %) 426 (16.4 %) 2592

PbSc 346 (2.2 %) 987 ( 6.3 %) 1272 (8.2 %) 2259 (14.5 %) 15552
PbGl 273 (3.0 %) 1095 (11.9 %) 568 (6.2 %) 1663 (18.0 %) 9216

Total 619 (2.5 %) 2082 ( 8.4 %) 1840 (7.4 %) 3922 (15.8 %) 24768

Table 3.4: The number of the bad towers, the warn towers and the edge towers. The bad
towers are included in the warn or edge towers. The masked towers are the sum of the warn
and edge towers and they are masked in the analysis. The numbers in the parenthesis are
the percentages to the total.

pair, both clusters of the pair must be located on the non-warn and non-edge region.
The definition of the warn and edge towers are described in Section 3.5.3.

• ERT check
The ERT check is only for the ERT sample and requires that the higher energy cluster
in the pair fires ERT. This is to eliminate the event bias in particular in the sample
of low pT π0s. π0s obtained by the ERT data sample are categorized into 2 groups.
π0 in the first group is the origin to fire ERT. π0 in the second group does not fire
ERT and other source such as high energy particles or noise in the same event fires
ERT. When π0s in the second group are included in the analysis, π0s with another high
energy particle in the same event are favored and, on the other hand, π0s with only
lower energy particles in the same event are disfavored. Therefore, non application of
the ERT check causes the bias in the event structure.

• Photon probability cut
The photon probability is calculated by comparing the ideal shape of the electromag-
netic shower with the measured shower shape in EMCal. See section 3.5.2 about the
photon probability. The clusters with the photon probability less than 0.02 are dis-
carded in the analysis. This threshold results in the efficiency of 0.98 in the photon
detection in the ideal condition. In the case of the cluster pairs, both clusters are
required to satisfy the cut of 0.02.

• Charged particle veto
Charged particles, which are mainly charged pions, kaons and protons, introduce the
background. They are rejected by the cut in the association between the hit position
on EMCal and that on PC3, which is located just in front of EMCal and responds to
only charged particles. See Section A.4.2 about PC3. The variable used for the cut
in the actual analysis is the angle δ which is displayed in Figure 3.21. δ is defined as
the angle between the vector from the event vertex to the EMCal hit position and the
vector from the event vertex to the PC3 hit position nearest to the EMCal hit position.
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Figure 3.22 displays the distribution of δ obtained in the experiment. Clusters with
small δ are likely to be the charged particles. However, they include the electron
position pairs from the photon conversion near EMCal. Such pairs do not separate
each other and produce single clusters like photon with same energy and hit position
as the initial photon, and can form π0 with another cluster. To keep the statistics,
the conversion pairs are used in the analysis. The separation of the conversion pairs
from charged hadrons is roughly possible because the position resolution of EMCal is
worse for the hadronic shower than that for the electromagnetic shower. Therefore, δ
is larger for the charged hadrons than the electron positron pairs. This statement is
illustrated in Figure 3.22. Finally, the region of the charged hadrons are removed in
the analysis. The cut value in δ depends on the cluster energy and is optimized to
minimize the error of the asymmetries. Figure 3.23 displays the cut value for PbSc
and PbGl as a function of the cluster energy. The region surrounded by two lines are
discarded. The cut disappears for the higher energy clusters since the loss of π0 by
the cut becomes serious. The energy at the disappearance of the cut is lower in PbGl
than PbSc because of the insensitivity to the hadronic interaction in PbGl. The detail
method of the optimization is described in Section A.8.

Figure 3.21: The definition of the angle δ.
The hit position on PC3 which is nearest to
the cluster on EMCal is used in the calcula-
tion of δ.
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Figure 3.22: The distribution of δ. Entry in
each bin is divided by δ. The distribution is
roughly divided into 3 regions as displayed
in the figure. The region of charged hadrons
is discarded in the analysis.

• ToF cut
ToF measured by EMCal is another tool for the particle identification. However, the
resolution of ToF is worse than the expected value because the energy dependence of
ToF is not corrected properly. For this reason, the loose cut with ToF is applied in this
thesis. In addition to the requirement that clusters must have valid ToF value, only
clusters with ToF < tγ + 5 nsec are accepted in the calculation of the asymmetries,
where tγ is ToF of photon. This loose cut is rather to remove abnormal cluster than
to purify the photon sample.3 As described in Section 3.5.3, ToF cut is not applied

3It is expected that optimized ToF cut with proper calibration does not significantly improve the particle
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Figure 3.23: The cut value for the charged particle veto. The left is for PbSc and the right
is for PbGl. The cut value is dependent on the cluster energy and extracted using data (red
and blue points). The line is the fit function and the region surrounded by the two lines are
discarded in the cut.

to EMCal towers with ToF module broken. The offset calibration of EMCal ToF is
described in Section 3.5.5.

The performance of the photon probability cut and the charged-particle veto cut for π0 is
evaluated by comparing the number of π0 with and without these two cuts. Other selections
above except for the photon probability and the charged particle veto are applied in this
evaluation. The efficiency of the cut and the purity of π0 are calculated using ERT sample
and summarized in Table 3.5. The efficiency is defined as the percentage of π0s surviving the
cuts. The purity is defined as the percentage of π0 in the all cluster pairs. In the calculation
of the purity, the cluster pairs in the “signal window” is considered. The signal window
is fixed in all measured pT bins to 0.111 – 0.161 GeV/c2 in the mass spectrum and same
as used in the calculation of the asymmetries. See Section 3.6.1 about how to calculate the
asymmetries. The efficiency is independent of the mass window chosen within the uncertainty
of 1%. The uncertainty of the purity is about a few % which is evaluated as in Section 3.6.2.
It introduces the error on the efficiency of ∼10 % for the lowest pT bin and ∼0.1 % for higher
pT region. The cuts for the particle identification is effective for π0 with lower pT because
EMCal is insensitive to hadrons and all energy from hadrons is not absorbed in EMCal. The
results from MB data are also extracted and no significant discrepancy between MB and ERT
is observed except for the lowest pT bin, 0.5 – 1.0 GeV/c, where the efficiency is worse. In
the lower pT region, π0s of MB sample consist of clusters with nearly equal low energy, while
ERT π0s consist of the high and low energy clusters due to the requirement of ERT. Since the
charged-particle veto cut is tight for the low energy clusters, the efficiency of π0 is roughly
twice worse in MB than ERT.

The invariant mass spectra after applying all cuts above are displayed in Figure 3.24 and
3.25 using ERT and MB sample, respectively. The spectra are displayed for each pT bin
which is same as the used in the calculation of the asymmetries. The main contribution to
the background is the combinatorial background, which is the pairs of clusters which are
not from the common π0. Hence, the background reduces in the higher pT region where the

identification because it must correlate with other cuts. Based on the data in the past years, the optimized
ToF cut would raise the purity by ∼5 % and reduce the efficiency by ∼2 % in low pT region, and would not
change them in high pT .
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PbSc PbGl
pT (GeV/c) Efficiency (%) Purity (%) Efficiency (%) Purity (%)

0.5 – 1.0 100 36 (17) 95 52 (42)
1.0 – 2.0 94 67 (48) 94 75 (68)
2.0 – 3.0 95 84 (75) 93 88 (84)
3.0 – 4.0 95 91 (86) 93 92 (90)
4.0 – 5.0 96 93 (89) 94 93 (91)
5.0 – 6.0 96 93 (89) 95 94 (92)
6.0 – 7.0 96 93 (90) 95 94 (91)
7.0 – 8.0 96 94 (90) 96 94 (91)
8.0 – 9.0 97 94 (90) 97 95 (91)

Table 3.5: The performance of the photon probability cut and the charged-particle veto cut.
Numbers without parenthesis in the column of the purity are the purities after the cuts
and the purities before the cuts are shown in the parentheses. ERT sample is used in the
evaluation.

multiplicity of π0 and other high momentum particles is small. The suppression of the lower
energy pairs in ERT sample generates the difference in the background shape in the lower pT

bins between ERT and MB. The peak near 0 in the low pT region is produced by the single
hadrons. Their primary and secondary interaction points in EMCal often separate due to
the long nuclear-interaction length and it provides two adjacent clusters forming pairs with
mass of ∼0.

Finally, the statistics of π0 after the background subtraction are summarized in Table 3.6.
π0s in the signal window is counted for the table. See Section 3.6.2 about the evaluation of
the background fraction.

pT MB ALL ERT ALL MB ATT ERT ATT

(GeV/c) (×103) (×103) (×103) (×103)

0.5 – 0.75 13248 446 129 20.0
0.75 – 1.0 8072 2163 78.5 101
1.0 – 1.5 6627 12982 64.2 671
1.5 – 2.0 1862 19179 17.8 1028
2.0 – 2.5 571 12993 5.61 705
2.5 – 3.0 193 6152 1.83 337
3.0 – 3.5 72.2 2633 0.70 145
3.5 – 4.0 29.3 1120 0.29 61.9
4.0 – 5.0 733 40.8
5.0 – 6.0 180 10.1
6.0 – 7.0 54.8 3.01
7.0 – 9.0 28.6 1.53

Table 3.6: The statistics of π0 used in the calculation of the asymmetries.
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Figure 3.24: The invariant mass spectra using ERT data sample. The pT binning is same as
that in the calculation of the asymmetries. Both PbSc and PbGl are used.
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Figure 3.25: The invariant mass spectra using MB data sample. The pT binning is same as
that in the calculation of the asymmetries. Both PbSc and PbGl are used.
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3.5.5 ToF calibration of EMCal

The calibration of offset and gain of EMCal ToF is initially performed semi-online based on
the laser system. See Section 2.3.4 about the detector. However, the energy dependence in
PbSc and the offset in both PbSc and PbGl are not calibrated properly semi-online in the
2005 run. In this section, the calibration of the offset is described. The energy dependence
of PbSc ToF is left in this analysis because of the technical issue and this results in the loose
ToF cut for the particle identification. See Section 3.5.4 about the particle identification and
the reconstruction of π0.

Two kinds of the offset calibrations are applied in this analysis. One is the EMCal
tower-by-tower calibration and the other is the run-by-run calibration. In the tower-by-tower
calibration, all events in the 2005 run are accumulated to obtain enough statistics for each
tower. On the other hand, in the run-by-run calibration, the offset is extracted EMCal sector
by sector by combining data of all towers in each sector in each run. Therefore, the iteration
of these two calibrations are needed in principle, but the resolution of PbSc ToF is not best
due to a limited correction for the energy dependence and more than a set of calibrations
does not provide the improvement. No iteration is also needed for PbGl because the same
loose cut as PbSc is adopted.

Both tower-by-tower and run-by-run calibrations are carried out using a peak in the ToF
distribution. Mainly photons which has the large statistics and the constant velocity form
the peak. The corrections of the start timing by BBC and the distance from the event
vertex to the hit position on EMCal are applied before the calibration. Then, the peak of
every tower or every run is set to 0 nsec in the offset calibration. Figure 3.26 displays the
ToF distribution after the offset calibration. The tail on the right side of the peak indicates
slower particles like hadrons than photon. The tail on the left side in PbSc is caused by the
wrong calibration for the energy dependence of ToF. For this reason, the cut for the particle
identification is applied only for the slower particles and the particles with faster ToF than
photon are accepted in the analysis. The ToF offset becomes shifted as the time goes and the
shift is about 1 nsec between the first and the last of the 2005 run. Figure A.4 in Section A.9
displays the sector-by-sector ToF offset as a function of the run number.

ToF (nsec)
-15 -10 -5 0 5 10 15

# 
o

f 
cl

u
st

er
s

0

50

100

150

200

250

300

350
310×

Sector-by-Sector ToF (PbSc)

ToF (nsec)
-15 -10 -5 0 5 10 15

# 
o

f 
cl

u
st

er
s

0

100

200

300

400

500

600

310×
Sector-by-Sector ToF (PbGl)

Figure 3.26: The sector-by-sector ToF distribution after the offset calibration. The left is for
PbSc and the right is for PbGl. The difference of the statistics comes from the sector-by-sector
variation of the ERT efficiency and the warn towers.

In the tower-by-tower calibration, some towers indicate unavailable ToF value. For ex-
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ample, two peaks are found in the ToF distribution, or ToF value spreads very widely. It
is assumed that the electric circuit to process ToF is broken for these towers, however the
energy measurement by these towers are often performed properly. Since the ToF cut for
these towers causes more inefficiency than other usual towers, in this thesis, the cut is not
applied to the towers and all clusters hitting the towers pass the cut.

3.5.6 Energy calibration of EMCal

Initially the time dependence of the energy gain is corrected tower by tower using the laser
system for both PbSc and PbGl. This semi-online calibration corrects only tower-by-tower rel-
ative time-shift. Therefore, the gain ununiformity between towers remains. See Section 2.3.4
about the laser system. In the offline analysis, additional energy calibration is carried out
utilizing the measured π0 peak, which is the physics signal and therefore most reliable. The
offline calibration is divided into 3 steps; run dependence (time dependence), tower-by-tower
calibration and calibration for the absolute scale. The first two calibrations need the iter-
ation each other in principle because the events in whole 2005 run are accumulated in the
tower-by-tower calibration and the correction of the run dependence is done sector by sector.
However, the satisfactory resolution is achieved by a set of the calibrations and no further
iterations are performed. The non-linearity in the energy measurement due to the threshold
to each tower is also evaluated in the step for the calibration of the absolute scale. See also
Section 3.5.2 about the clustering. Since the measured π0 peak is used in these steps, the
invariant mass of π0 is need to be reconstructed from the EMCal cluster pairs. To remove
the warn towers, the quality assurance of the towers described in Section 3.5.3 is once exe-
cuted before the energy calibration. After the calibration is finished, the warn tower finding
is performed again because the mis-calibration fakes noisy towers. In the following sections,
detail description about the offline calibration appears.

Run dependence of energy gain

The time dependence of the EMCal energy gain is initially corrected using the laser system for
both PbSc and PbGl. This correction is executed semi-online. In this step, the residual time
dependence is calibrated using the measured π0 peak. π0s are reconstructed sector-by-sector
in every run and the spectra are fitted to the combination of Gaussian and polynomial. The
shift of the π0 peak from the normal position is assumed to be the shift of the energy gain
and additional factor is applied to the gain in the analysis. The normal position of the π0

peak is not same as the mass of π0, 0.135 GeV/c2, because of the resolution of the detector.
In this step, the observed π0 peak is set to a certain value near 0.135 GeV/c2. Finally the
absolute scale is calibrated in the last step of the energy calibration. The energy gain turns
to become shifted by ∼3 %. The position of the π0 peak as a function of the run number is
displayed in Figure A.5 in Section A.10

Tower-by-tower energy gain

The tower-by-tower energy calibration also utilizes the peak position of π0 in the invariant
mass spectrum of the cluster pairs. The deviation of the π0 peak in the tower-by-tower
spectrum from the normal position is assumed to reflect the gain shift. The mass spectrum
for a certain tower (the target tower) consists of the cluster pairs which include the cluster
located at the target tower. Figure 3.27 displays the concept schematically. On the other
hand, probably, the other cluster of such a pair is formed in other place on EMCal. In this
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step, it is assumed that the shift of the π0 peak for the target tower is caused by the gain shift
of the target tower and the effects from other towers are averaged and negligible. However,
to achieve better calibration, this step is iterated several times. Figure 3.28 displays the
comparison of the π0 peak width before and after the tower-by-tower energy calibration. The
width becomes significantly narrower by the calibration. In both cases, the contribution to
make the width wider at low pT is dominated by the energy resolution of EMCal, while that
at high pT is by the position resolution.

Figure 3.27: The conceptual drawing for the tower-by-tower energy calibration. π0s whose
photon hits the target tower are collected to make the tower-by-tower spectrum.
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Figure 3.28: The π0 peak width as a function of π0 pT . The left is for PbSc and the right is
for PbGl. Less statistics are used for the points before the calibration than those after the
calibration because it is sufficient for the comparison.

In this step, the calibration is tried for all towers in EMCal, including even towers with
problem in the electrical circuit and the towers located at the edge of the EMCal sector. Then,
towers which cannot be calibrated are included in the warn tower described in Section 3.5.3.
The reason of the failure in the calibration is mainly due to the electrical noise which covers
the π0 peak. In addition, the behavior of the electrical circuit is strange in some towers,
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where two π0 peaks are observed for example. The incident particle hitting the edge of the
EMCal sector does not deposit all energy in EMCal due to the shower leakage. However π0s
are successfully reconstructed using the clusters hitting the edge towers because the most
of the energy is detected by the tower the particle hits, though the peak position of π0 is
slightly lower than the normal position. In this calibration, the π0 peak position for the edge
towers is set to the same position as other inner towers since the edge towers are masked in
the extraction of the asymmetries. The effect of the slight mis-calibration in the edge towers
to the towers near the edge tower is expected to be negligible compared with the accuracy
of the calibration. Moreover, the warn tower includes the suspicious towers in which the
calibration works but the mass spectrum has bad shape, such as the broad π0 peak, too
much background and so on.

Absolute energy gain

The absolute scale of the energy is calibrated by comparing the π0 peak and the fast Monte
Carlo simulation (FastMC) using both the ERT and MB sample. FastMC is the simple
numerical simulation unlike GEANT and utilizes the measured cross section of π0 as the
particle generator. The produced π0s decay into two photons isotropically in the rest frame
of π0. In the generation of π0, the spread of the event vertex is simulated based on Gaussian
with a width of 30 cm, which is a little narrower than the measured width but the difference
does not change the results. Then, FastMC simulate the photons from π0 with the following
setup.

• Energy and position resolution
The initial energy and position is fluctuated following Gaussian distribution. The res-
olutions are evaluated by the test beam. See Section 2.3.4 about the performance of
EMCal. In this simulation, the additional factor is applied to fit the real data.

• Electromagnetic shower profile
The profile of the electromagnetic shower is simulated and tower-by-tower energy thresh-
old (∼0.01 GeV) is applied based on the profile. Selection of the core towers in the
PbSc clustering is also simulated. See Section 3.5.2 about the clustering.

• Warn and edge towers
Masked region of EMCal due to the warn or edge towers is simulated. See Section 3.5.3
about the warn and edge towers.

• Trigger efficiency of ERT
The trigger efficiency of ERT is applied for the single photon. This is disabled for the
MB data sample. See Section 3.5.1 about the ERT performance.

Because the charged-particle veto cut and ToF cut is difficult to simulate, they are not applied
in the comparison between the data and FastMC.

As well as the energy scale, the resolutions of the energy and position are also reflected by
the peak position and width of π0, which is measured using the data. Therefore, the energy
and position resolution in the simulation must be tuned to fit the real data and the energy
scale is in turn determined properly.

There are two reasons why not only the width but also the position of the π0 peak are
modified. One is the energy threshold for the EMCal tower, ∼0.01 GeV, and it causes that the
energy of the reconstructed clusters is lower than the incident energy. The percentage of the
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energy loss is larger for the lower energy clusters. The correction of this energy non-linearity
is corrected for every cluster based on FastMC. The other effect to modify the peak position
of π0 is caused by the combination of the steep slope of the pT spectrum of π0 and the energy
resolution of EMCal. In the experiment, when a certain pT window is selected, the events in
the window include not only events with original pT in the window but also those from the
neighbor window because of the smearing effect by the detector resolution. In the case that
the pT spectrum is downside, more events leak into the target window from the initially low
pT window than those from the high pT window. Since the measured pT of such events from
the lower (higher) pT window is higher (lower) than the original pT , the reconstructed π0 mass
is also higher (lower) than the original and universal value of 0.135 GeV/c2. Consequently,
the measured peak position of π0 becomes higher in the case of the downside pT distribution
and lower for the soaring distribution.

The π0 peak position becomes additionally lower due to the unusual π0s. One of the
sources of such π0s is the case that photons from the decay of π0 convert into the electron
positron pairs. π0 is well reconstructed using such electron positron pairs, when they do not
separate each other to form the single clusters. See also Section 3.5.4 about the photons
which convert into electron positron pairs. π0s from the decay of other hadrons like K0

s and
η is another source. One other is π0s generated in the secondary interaction with the beam
pipe or detectors. The invariant mass of all of these unusual π0s has lower peak position
than the usual π0s reconstructed by the pure photons. The size of the shift due to this effect
is evaluated by means of the GEANT simulation to be −1 ± 1 MeV/c2. Because FastMC
cannot simulate this effect, the peak position of π0 is simply lowered by 1 MeV/c2. The error
of this effect, 1 MeV/c2, is included in the uncertainty of the energy calibration.

The energy non-linearity determined in this calibration is a function of the cluster energy
and described as

Eincident = Ecluster

[

1.0 +
A

(Ecluster − B)n

]−1

,

where A = −101, B = −1.91, n = 10.0 for PbSc,

A = −0.0403, B = −0.121, n = 0.846 for PbGl. (3.20)

Eincident and Ecluster in the equation is the incident energy and the cluster energy, respectively.
The non-linearity correction is normalized to 1 at Eincident → ∞. Following this relation, the
measured energy of the cluster is corrected. The ratio of the cluster energy and the incident
energy obtained by FastMC is displayed in Figure 3.29 as a function of the cluster energy.
The difference between PbSc and PbGl is from the method of the clustering. Because only
the core towers are used to extract the cluster energy in PbSc, the energy loss due to the
tower-by-tower threshold, which is usually caused by the non-core towers, is automatically
corrected.

Figure 3.30 and 3.31 displays the comparison between the data and FastMC in the position
and the width of the π0 peak using the ERT data sample. The energy non-linearity is already
corrected in these figures. In the tuning of FastMC, additional factor of 6 – 7 % and 2 –
3 mm is added quadratically to the constant term of the energy resolution and the position
resolution, respectively. FastMC reproduces the data well at more than 1 GeV/c2. The
discrepancy between the data and FastMC at the lower pT region is expected to be due to
the large background and the difficulty in the extraction of π0 by the fitting. But the energy
scale is determined by the higher pT region and it is not necessary to fit FastMC to the data
at the lower pT . The figures of the comparison between the data and FastMC for other data
sets are summarized in Section A.11.
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Figure 3.29: The ratio of the cluster energy and the incident energy. The points are obtained
by FastMC and the lines show the fit function.

Owing to the enough statistics, FastMC is well tuned with the accuracy of 0.2 MeV/c2.
The uncertainty of 1 MeV/c2 by the unusual π0s described above is translated into the
uncertainty of 0.7 % in terms of the energy scale. In addition, the slight difference of the
π0 peak position between sectors of EMCal is observed and is expected to be from the mis-
alignment of EMCal. The error from the mis-alignment is conservatively evaluated to be 2 %
in the energy scale. Finally, the systematic uncertainty of the energy scale is calculated by
the quadratic sum to be 2.1 %. As described in Section 3.7.5 in detail, the contribution of
this error to that of the asymmetries is negligibly small because the pT dependence of the
observed asymmetries are nearly flat.

3.5.7 Stability of EMCal

The purity of π0 is utilized to examine the stability of EMCal and the quality of the data. The

purity is defined as
N

π0

N
π0+NBG

, where Nπ0 and NBG is the number of π0 and the background

under the π0 peak. In this analysis, Nπ0 and NBG are counted within the signal window of
0.111 – 0.161 GeV/c2 for the calculation of the asymmetries. See Section 3.6.1 about the
window. Figure 3.32 displays the sector-by-sector π0 purity as a function of the run number.
In the runs with low purity and high background, it is assumed that some additional tower
of EMCal is electrically noisy or the beam background is large. The beam background is
generated by the interaction of the beam and the material around the collision point such
as the beam pipe and the air. Therefore, such runs are discarded in the analysis. The
criterion in the rejection is that the deviation from the average is more than 4 sigma in
the run-by-run fluctuation. The stability of the position and the width of the π0 peak are
also examined. The information of the peak position is used for the energy calibration as
described in Section 3.5.6. The width of the peak is stable over whole 2005 run as displayed
in Figure A.6 and no run is discarded by these criteria.
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Figure 3.30: The π0 peak position as a function of pT after the energy calibration and the
energy non-linearity correction. The left is for PbSc and the right is for PbGl. The ERT
data sample is used in these figures. The black boxes are obtained by the real data and the
red points are the simulation.
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Figure 3.31: The π0 peak width as a function of pT after the energy calibration and the
energy non-linearity correction. The left is for PbSc and the right is for PbGl. The ERT
data sample is used in these figures. The black boxes are obtained by the real data and the
red points are the simulation.
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Figure 3.32: The sector-by-sector purity of π0 as a function of the run number. There is a gap
around run 176000, when the number of the beam crossings is increased and the successive
bunches are filled by the beam. Therefore, the threshold of ERT is slightly changed at that
time. See Section 2.3.4 about the specification of the EMCal trigger.
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3.6 Calculation of asymmetries

3.6.1 Process to extract the asymmetries

Since the process is common for ALL, ATT and AL, the case of ALL is described in this section
as an example. The extraction of ALL is performed as follows. Instead of directly extracting
the yield of π0 by the subtraction of the background under the π0 peak, the contribution of
the background is subtracted in terms of ALL. This is the effort to minimize the number of
fitting the mass spectrum because it is difficult to evaluate the uncertainty in the fitting.

Figure 3.33 displays the invariant mass spectrum of the cluster pairs in a certain kinematic
region and the peak around 0.135 GeV/c2 on the continuous background is the signal of π0.
The goal is the extraction of ALL for the red region in Figure 3.33. At the first step, ALL

is calculated for the sum of π0 and the background under the π0 peak in a certain mass
window, which is defined as the “signal window” (the sum of the red and yellow region). In
the same way, ALL for the background on the both sides of the peak, which is defined as the
“background window” (the blue region), is calculated. These two ALL’s are calculated fill by
fill and averaged over all fills in the 2005 run. The asymmetries obtained by the average are

described as Asig
LL for the signal window and A

BG(side)
LL for the background window. Similarly,

Aπ0

LL and A
BG(under)
LL are defined as the asymmetry for the red and yellow region, respectively,

though they cannot be obtained directly. At the second step, the purity of π0 (p) is evaluated
by use of fitting the mass spectrum. The π0 purity is defined as the percentage of the red
region in the signal window. The detail about the evaluation of the purity is described in

Section 3.6.2. At the last step, the contribution of A
BG(under)
LL is subtracted from Asig

LL. Based

on Equation (1.56), the relation between Aπ0

LL, Asig
LL and A

BG(under)
LL is written as

Asig
LL =

1

P̄BP̄Y

N sig
++ − N sig

+−R

N sig
++ + N sig

+−R

= p
1

P̄BP̄Y

Nπ0

++ − Nπ0

+−R

Nπ0

++ + Nπ0

+−R
+ (1 − p)

1

P̄BP̄Y

N
BG(under)
++ − N

BG(under)
+− R

N
BG(under)
++ + N

BG(under)
+− R

= pAπ0

LL + (1 − p)A
BG(under)
LL . (3.21)

P̄B and P̄Y is the blue and yellow beam polarization, respectively. N is the yield and the
superscript indicates the mass window as for ALL and the subscript indicates the helicity
combination of the collision. R is the relative luminosity. Therefore Aπ0

LL and its uncertainty
is obtained by

Aπ0

LL =
1

p
Asig

LL − 1 − p

p
A

BG(under)
LL , (3.22)

∆Aπ0

LL =
1

p
∆Asig

LL ⊕ 1 − p

p
∆A

BG(under)
LL ⊕ Asig

LL − A
BG(under)
LL

p

∆p

p
. (3.23)

However, because A
BG(under)
LL cannot be extracted directly, it is evaluated by A

BG(side)
LL as-

suming A
BG(under)
LL and A

BG(side)
LL are the same value. In the following text, A

BG(side)
LL is

simply described as ABG
LL . In the actual calculation, range of Mcenter − 0.025 GeV/c2 to

Mcenter +0.025 GeV/c2 is adopted for the signal window, and range of Mcenter −0.08 GeV/c2

to Mcenter − 0.05 GeV/c2 and Mcenter + 0.05 GeV/c2 to Mcenter + 0.08 GeV/c2 are for the
background window. Mcenter is determined to be 0.136 GeV/c2. The range and position of
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the windows are fixed in all measured pT bins. As displayed in Figure 3.30, Mcenter is nearly
the center of the measured π0 peak and the deviation is 0.003 GeV/c2 at most. The signal
window covers more or less 2-sigma in the width of the π0 peak as compared to Figure 3.31.
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Figure 3.33: The mass window for the asymmetry calculation. To extract the asymmetry of
π0 (red), the contribution of the background under the peak (yellow) is evaluated using the
background on the sides of the peak (blue).

The validity of this process to subtract the background is supported utilizing FastMC
described in Section 3.5.6. Figure 3.34 and 3.35 display the energy asymmetry distribution
for π0 and compare the data with FastMC. The energy asymmetry is defined as |E1−E2|

E1+E2
, where

E1 and E2 are the energy of each cluster of the cluster pair. The red points are obtained
from the data and the histogram filled with gray is produced by FastMC. As in the case to
calculate the asymmetry, the extraction of the energy asymmetry distribution for pure π0s is
executed by subtracting the contribution of the background under the π0 peak by use of the
background on the sides of the peak. On the other hand, the distribution is for pure π0 in
FastMC.

The energy threshold for the cluster of 0.1 GeV makes the steep drop on the right side
of the figures. The asymmetric decay favored in the ERT sample is caused by the EMCal
trigger which require that at least one of the clusters in the pair is over the threshold in energy.
Therefore, the distribution becomes more flat for π0s with high pT . FastMC reproduces the
data well except for the lowest pT bin, where the background shape in the mass distribution
is asymmetric around the π0 peak and the energy asymmetry distribution of the background
is a little different between the lower and the higher mass window. The agreement between
the data and FastMC implies both that FastMC is well tuned and that the background on
the sides of the peak well represents the background under the peak.

Similarly, the mean pT value corresponding to each pT bin is evaluated. In terms of the
equation, pT for pure π0s is described as

〈pT
π0〉 =

1

p
〈pT

sig〉 − 1 − p

p
〈pT

BG〉, (3.24)

where the superscript of pT indicates the mass window and 〈pT 〉 means taking an average
value of pT in the corresponding mass window. The mean values are listed in Table 3.7.
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Figure 3.34: The energy asymmetry distribution using the ERT data sample. The red points
is obtained from the data and the histogram filled with gray is produced by FastMC.
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Figure 3.35: The energy asymmetry distribution using the MB data sample. The red points
is obtained from the data and the histogram filled with gray is produced by FastMC.
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The mean pT for pure π0 is also calculated using the background on the only lower side or
higher side of the peak. The discrepancy more than the statistical uncertainty between them
is assigned as the systematic error. The error on the mean pT is 2.4 % at a maximum at
the lowest pT bin for the MB data sample and contributes to the negligible uncertainty in
terms of the asymmetries. It is evaluated in the same way as that from the uncertainty of
the energy scale. See Section 3.7.5 for more detail.

pT range Mean pT (MB) Mean pT (ERT)
(GeV/c) (GeV/c) (GeV/c)

0.5 – 0.75 0.62 ± 0.000 ± 0.015 0.67 ± 0.000 ± 0.004
0.75 – 1.0 0.86 ± 0.000 ± 0.003 0.90 ± 0.000 ± 0.001
1.0 – 1.5 1.20 ± 0.000 ± 0.002 1.29 ± 0.000 ± 0.002
1.5 – 2.0 1.70 ± 0.000 ± 0.000 1.75 ± 0.000 ± 0.000
2.0 – 2.5 2.20 ± 0.000 ± 0.000 2.22 ± 0.000 ± 0.000
2.5 – 3.0 2.71 ± 0.000 ± 0.000 2.72 ± 0.000 ± 0.000
3.0 – 3.5 3.21 ± 0.001 ± 0.000 3.21 ± 0.000 ± 0.000
3.5 – 4.0 3.71 ± 0.001 ± 0.000 3.72 ± 0.000 ± 0.000
4.0 – 5.0 4.38 ± 0.000 ± 0.000
5.0 – 6.0 5.40 ± 0.001 ± 0.000
6.0 – 7.0 6.41 ± 0.001 ± 0.000
7.0 – 9.0 7.72 ± 0.003 ± 0.000

Table 3.7: The mean value of pT for pure π0 after the background subtraction. The first
error shows the statistical one and the second is systematic.

3.6.2 π0 purity

As described in Section 3.6.1, it is necessary to know the purity of π0 to finally extract the
asymmetries for pure π0. The purity is defined as the percentage of the π0 yield in a certain
mass window including the π0 peak. The purity is obtained by fitting the mass spectrum
and Figure 3.36 displays the explanation drawing for that. Instead of fitting the π0 peak
directly, only the background region on the sides of the peak (two blue window) are fitted
to the polynomial (green line) to evaluate the yield of the background under the peak (the
yellow region). The background yield is simply calculated by integrating the fit function over
the mass window for the asymmetry extraction (the red window), which is defined as the
signal window as described in Section 3.6.1. Then the yield of π0 is obtained by subtracting
the background yield from the total yield in the signal window.

The reason not to fit the peak is that the π0 peak is not the simple Gaussian distribution
and the fitting to Gaussian results in the huge chi-square (the reduced chi-square is the order
of 100). This tendency of the peak shape is reproduced by FastMC described in Section 3.5.6.
On the other hand, only the background around the peak is well expressed by the polynomial
function (the reduced chi-square of the fitting is a few). The function to fit the background
region is from the quadratic polynomial for the higher pT bin to the 5th degree polynomial
for the lowest pT bin.

The basic windows for the fitting to evaluate the background yield (the blue window) are
(Mcenter − 0.08) – (Mcenter − 0.05) GeV/c2 and (Mcenser + 0.05) – (Mcenter + 0.15) GeV/c2,
which is wider than the background window used for the calculation of the asymmetries.
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Figure 3.36: The drawing to explain how to evaluate the purity of π0. The green curve is the
function fitted to the background region displayed as the blue windows.

The signal window is ±0.025 GeV/c2 around Mcenter. For all pT range, Mcenter is set to
0.136 GeV/c2, which is roughly the center of the π0 peak as displayed in Figure 3.30.

The uncertainty of the purity is evaluated considering as follows.

• Statistical error of the yield.

• Uncertainty from the fit function.
In the integral of the fit function to evaluate the background yield, the uncertainty
from the fit parameters is calculated. Since it should include the statistical error of the
background yield, the contribution of the statistics are subtracted.

• Fluctuation of the fittings.
The fitting is performed 9 times with mass range changed. In addition, the degree of
the polynomial is increased by one at the fitting. Totally 18 patterns of the fitting are
proved and the maximal deviation from the value with the basic window is assigned to
the final uncertainty of the purity.

Table 3.8 summarize the purities and its error for the data with the longitudinal polarization.
The results are consistent with the purities for the transverse polarization data within the
uncertainties. The systematic uncertainty is dominant compared with the statistical one. The
major contribution to the systematic error in the lower pT region is the fluctuation of the
fitting by changing the fit window and the function (the third item in the above itemization).
While the error from the each fitting is main in the higher pT region (the second item in the
above itemization) and it implies that the poor statistics and the fit function with relatively
large degree-of-freedom produce the ambiguity in the fitting. The error of the purity is
propagated into the error of the asymmetries. However, it is considerably small following
Equation (3.23). See Section 3.7.6 about the systematic error on the asymmetries.

3.6.3 Statistical error evaluation for the asymmetries

Instead of the square root of the statistics, the statistical error of the yield is estimated more
properly in this analysis. The basic idea is that what follows the Poisson distribution is not

98



pT (GeV/c) MB purity (%) ERT purity (%)

0.5 – 0.75 34.8 ± 0.01 ± 1.70 30.9 ± 0.04 ± 1.15
0.75 – 1.0 51.0 ± 0.01 ± 1.40 48.7 ± 0.02 ± 3.53
1.0 – 1.5 67.6 ± 0.01 ± 0.75 63.7 ± 0.01 ± 1.76
1.5 – 2.0 80.4 ± 0.03 ± 0.69 74.6 ± 0.01 ± 1.49
2.0 – 2.5 86.2 ± 0.04 ± 0.50 83.2 ± 0.01 ± 0.18
2.5 – 3.0 89.1 ± 0.07 ± 0.48 88.2 ± 0.01 ± 0.15
3.0 – 3.5 91.4 ± 0.10 ± 1.82 90.8 ± 0.02 ± 0.40
3.5 – 4.0 92.4 ± 0.15 ± 2.03 92.0 ± 0.02 ± 0.34
4.0 – 5.0 92.7 ± 0.03 ± 0.34
5.0 – 6.0 93.1 ± 0.06 ± 0.53
6.0 – 7.0 93.4 ± 0.10 ± 1.23
7.0 – 9.0 93.7 ± 0.14 ± 1.27

Table 3.8: The purity of π0 for the ERT and MB sample with longitudinal polarization. The
first and second error indicates the statistical and systematic error, respectively.

the statistics of π0 but the number of the collisions. This statement is easily understood
if always two particles are generated in the single collision. In this case, the number of
the generated particles is 2n when n collisions occur. Therefore, the statistical error of the
generated particles should be 2

√
n, not

√
2n.

For more realistic case, the situation that k particles are observed in N col
k collisions out

of N col collisions in a certain kinematical range is considered. N col and the total number of
the particles (Npart) in N col collisions are written as

N col =
∞
∑

k=0

N col
k , Npart =

∞
∑

k=0

kN col
k . (3.25)

As described above, when N col follows the Poisson distribution (∆N col
k =

√

N col
k ), the error

of Npart is calculated as follows.

∆Npart =
√

∑

k2N col
k

= kenhance
√

Npart, (3.26)

where

kenhance =

√

µ2
k + σ2

k

µk
, µk =

∑

kN col
k

∑

N col
k

, σk =

∑

(k − µk)
2N col

k
∑

N col
k

. (3.27)

The range of k for the summation is abbreviated. kenhance indicates the enhancement of the
statistical error from the simple square root. In the case of the example above, obviously
µk = 2 and σk = 0. Then, the enhancement factor of

√
2 is reproduced. In terms of ALL, the

uncertainty is multiplied by a factor of kenhance from Equation (1.56).
In this analysis, Npart corresponds to the statistics of the cluster pairs in a certain mass

window and kinematical region. Table 3.9 collects kenhance’s for the yield in the signal window
and the background window defined in Section 3.6.1. Because the multiplicity of the cluster
pairs is larger in the lower pT region for the MB data sample, kenhance is larger in the lower
pT bin. On the other hand, kenhance is smaller for the ERT sample than that for MB since
the low energy clusters are suppressed by the EMCal trigger.
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pT (GeV/c2) MB ERT

0.5 – 0.75 1.16 (1.14) 1.05 (1.05)
0.75 – 1.0 1.09 (1.08) 1.05 (1.04)
1.0 – 1.5 1.08 (1.08) 1.06 (1.06)
1.5 – 2.0 1.04 (1.05) 1.05 (1.05)
2.0 – 2.5 1.03 (1.04) 1.03 (1.04)
2.5 – 3.0 1.02 (1.04) 1.02 (1.04)
3.0 – 3.5 1.02 (1.03) 1.02 (1.04)
3.5 – 4.0 1.01 (1.03) 1.01 (1.03)
4.0 – 5.0 1.02 (1.04)
5.0 – 6.0 1.02 (1.04)
6.0 – 7.0 1.01 (1.04)
7.0 – 9.0 1.02 (1.05)

Table 3.9: kenhance for the yield in the signal window. kenhance for the background window
is in the parenthesis. These values are extracted using whole EMCal sectors. The data with
pT more than 4.0 GeV/c are not analyzed for the MB sample due to the small statistics.

3.6.4 Asymmetries

ALL, ATT and AL are calculated following the process described in Section 3.6.1. Figure 3.37
displays an example of ALL for the signal window, 0.111 – 0.161 GeV/c2 in the mass spectrum,
as a function of the fill number. Then, the points of fill-by-fill ALL are fitted to constant. The
obtained average value is defined as Asig

LL in Equation (3.23). Similarly, ABG
LL is calculated

using the background window. Reduced chi-squares of fitting the fill-by-fill asymmetries are
in the range of 0.65 – 1.48 for ALL, 0.002 – 5.97 for ATT and 0.66 – 1.76 for AL. Small and
large reduced chi-squares for ATT are simply due to small number of fills. Evaluation of the
chi-squares are carried out by bunch shuffle as explained in Section 3.7.8. It is concluded by
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Figure 3.37: ALL for the signal window as a function of the fill number. The even beam
crossing of the ERT data sample are used for this figure. pT range selected is 3.5 – 4.0 GeV/c
as an example. The dashed line indicates ALL = 0. The red line is the result of fitting to
constant.
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the bunch shuffle that the chi-squares are within statistical fluctuation except for the lower
pT bin of ALL with MB sample. Finally, Aπ0

LL is obtained by subtracting the contribution

of ABG
LL from Asig

LL following Equation (3.23), where the purity in Table 3.8 is used. In the
calculation of the asymmetries for ERT sample, the data is divided into even and odd number
crossings due to the trigger specification. See Section 2.3.4 about the ERT trigger.

Figure 3.38 displays Asig
LL and ABG

LL for the ERT sample with even and odd crossings, and

the MB sample as a function of pT . Aπ0

LL after the background correction is displayed in

Figure 3.39. The results of Aπ0

LL are consistent between the ERT and MB data. The results
from the even and odd crossings of the ERT sample are averaged to obtain the final results,
which is described in Section 4.1. For these and following figures of the asymmetries in this
section, the mean value of pT described in Table 3.7 is not applied but just a center of each
bin is used.
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Figure 3.38: ALL as a function of pT for the signal window (left) and the background window
(right). The red, blue and black points are produced using the ERT even crossings, the ERT
odd crossings and the MB data, respectively. pT for each black point is just a center of the
bin, and those for blue and red points are shifted by ±0.05 GeV/c from the center.
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Figure 3.39: π0 ALL as a function of pT . The red, blue and black points are produced using
the ERT even crossings, the ERT odd crossings and the MB data, respectively. pT for each
point is just a center of the bin, and those for blue and red points are shifted by ±0.05 GeV/c
from the center.
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In the same way, π0 ATT is extracted using the data with the beam polarized transversely.
In practice, the measured asymmetry A′

TT should have azimuthal angle dependence as de-
scribed in Section 1.12. However, the data is integrated over whole detector coverage in the
analysis. Because A′

TT is proportional to − cos(2φ) (see Section 2.3.1 for definition of φ), it
is necessary to correct A′

TT by a factor of ∼0.588 to obtain ATT . (see Section 2.3.1 about

the detector coverage). In Figure 3.40, A′π0

TT is displayed. In terms of the ALL measurement,
ATT causes a systematic uncertainty and the contribution is evaluated in Section 3.7.3.
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Figure 3.40: π0 A′
TT as a function of pT . The red, blue and black points are produced using

the ERT even crossings, the ERT odd crossings and the MB data, respectively. pT for each
point is just a center of the bin, and those for blue and red points are shifted by ±0.05 GeV/c
from the center.

In addition, the single spin asymmetry AL is also calculated using the longitudinal polar-
ization data. Since both the blue and yellow beam are polarized, AL can be extracted using
the blue and yellow beam, respectively. Figure 3.41 displays Aπ0

L as a function of pT . It is
expected that the contribution of the weak interaction is negligibly small in this energy scale
and AL results in zero. As expected, the measured AL is consistent with zero within the
statistical error.
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Figure 3.41: π0 AL as a function of pT . The left plot is AL with respect to the blue beam
polarization and the right is for the yellow beam polarization. The red, blue and black
points are produced using the ERT even crossings, the ERT odd crossings and the MB data,
respectively. pT for each point is just a center of the bin, and those for blue and red points
are shifted by ±0.05 GeV/c from the center.
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3.7 Systematic uncertainty evaluation

The several sources of the systematic uncertainty are considered in this analysis. They are
listed in the following subsections and the summary of the systematic uncertainty for π0 ALL

is put in Section 3.7.9. The summary for ATT and AL is written in Section A.16.

3.7.1 Beam shift and tilt at the collision point

As described in Section 2.1, the beam has a finite size on the x-y plane and may tilt from
the ideal trajectory. The contribution from such effects to the uncertainty in the results are
evaluated in this section. Three cases (a), (b) and (c) are assumed as displayed in Figure 3.42.

Figure 3.42: Three cases of the systematic uncertainty related to the initial beam direc-
tion. The dashed arrows are the planned beam direction and the solid arrows indicate the
assumption for the evaluation of the error.

(a) Shift of the event vertex.
RHIC beam is designed to have the transverse size of ∼ 0.4 mm. In addition, the
analysis on the charged particle using the central arm reveals that the beam position at
the collision point is shifted by about 3 mm along the y-axis from the planned position.
Since the measured π0 mass is inversely proportional to the distance from the event
vertex to EMCal, the shift of 3 mm, dbeam in Figure 3.42.(a), results in the shift of
the measured mass of ∼ 3

5000 = 0.06 %, where 5000 mm is the typical distance of the
collision point to EMCal. Though the systematic shift of the measured π0 peak has
possibility to affect the energy calibration, the shift of 0.06 % is negligible compared
to the assigned uncertainty of the energy scale of 2.1 %. See Section 3.5.6 about the
energy scale.

(b) Tilt of the beam direction.
In this case, the blue and yellow beam are parallel each other but tilted by θbeam as
displayed in Figure 3.42.(b). This effect results in the shift in the rapidity η of π0. For
the evaluation, the angle of the beam tilt of θbeam = 0.002 is assumed.4 This introduces
the shift of ∼0.002 in η, which is negligible in our measurement where the data are
accumulated over the measured η region.

4This assumption corresponds to 3.6 cm shift on the x-y plane at 1800 cm from the collision point, where
ZDC is located. Therefore, it is supposed to be an overestimation since AN (a left-right asymmetry by the
beam transversely polarized) is properly measured by a 10 cm-width ZDC. See Section 2.2.3 about PHENIX
local polarimeter.
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(c) Boost by the beam tilt.
When the beams are tilted as displayed in Figure 3.42.(c), generated particles are
boosted. Assuming the angle of the beam tilt of 0.002 in the same way as the previous
item, the discrepancy between the measured momentum and the momentum in the rest
frame of the initial collision system is calculated to be ∼0.2 %. This systematic shift
is negligible compared to the uncertainty of the energy scale of 2.1 % as described in
Section 3.5.6.

3.7.2 Beam polarization

Uncertainty of ALL is evaluated based on Equation (1.56);

∆ALL|pol. = ALL
∆(PBPY )

PBPY
, (3.28)

where residual transverse component of the polarization is ignored. As obtained above, the
uncertainty from the beam polarization is fully correlated over all pT bin and behaves as
a scale. This is same for ATT . Similarly, the uncertainty from the polarization becomes
approximately scale error for AL as explained in Section A.15. Using values described in
Section 3.3, the error from the beam polarization is summarized in Table 3.10. Following

ALL ATT AL
∆A
A 0.095 0.107 0.047

Table 3.10: Systematic uncertainty of ALL, ATT and AL from the error of the beam polar-
ization. The uncertainty is correlated over all pT bin.

a general manner, such a scale uncertainty is treated separately from other uncorrelated
systematic uncertainties in this thesis.

3.7.3 Local polarimeter

PHENIX local polarimeter detects the residual transverse component of the beam polar-
ization during the data taking with the polarization directed longitudinally. The relation
between ALL, ATT and the measured asymmetry Ameas normalized by the beam polarization
is described as follows;

ALL =
PB

PB,L

PY

PY,L
Ameas −

PB,T

PB,L

PY,T

PY,L
A′

TT , (3.29)

where P is the beam polarization. B (Y ) at the subscript indicates the blue (yellow) beam
and L (T ) indicates the longitudinal (transverse) polarization. P with neither L or T is

the size of the polarization; P =
√

P 2
L + P 2

T . See Section 1.12 and A.3 about this equation.

Because ATT is predicted to have − cos(2φ) dependence as mentioned in Section 1.12, the
measured asymmetry A′

TT instead of ATT itself is used in Equation (3.29). From Equa-
tion (3.29), the finite transverse polarization observed introduces the contamination of A′

TT

in ALL measurement, as well as the need to correct by P/PL. The results of local polarimeter
are described in Section 3.3.
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• Contamination of A′
TT

Though ATT appears when the beam polarizations are parallel, it is ignored and the
error is evaluated conservatively. Instead of correcting Ameas by measured A′

TT , the

size of
PB,T

PB,L

PY,T

PY,L
A′

TT is assigned as the error of ALL. Though the measured A′
TT is

consistent with 0 within the statistical error, the contamination of A′
TT is evaluated

assuming the absolute value of real A′
TT is in the range from 0 to the maximum one σ

edge of the statistical error. The error is summarized in Section 3.7.9.

• Uncertainty from P/PL

Similarly to the previous section, Ameas is not corrected by PB

PB,L
and PY

PY,L
. Instead, the

error is evaluated as follows. The first term of Equation (3.29) is approximated by

PB

PB,L

PY

PY,L
Ameas ∼ Ameas + (∆B + ∆Y )Ameas, (3.30)

where ∆B(Y ) is 1 − PL,B(Y )

PB(Y )
and the approximation is executed assuming ∆B(Y ) ≪ 1.

The second term of Equation (3.30) is assigned as the systematic uncertainty of ALL.
The evaluated uncertainty is summarized in Summary 3.7.9.

3.7.4 Relative luminosity

The uncertainty of the relative luminosity ∆R is described in Section 3.4. ∆R is translated
into the uncertainty of ALL following Equation (3.11). The uncertainty is evaluated for whole
2005 run using the average beam polarization listed in Table 3.1. The results are summarized
in Section 3.7.9.

3.7.5 Energy calibration

For the uncertainty of the energy calibration, 2.1 % from the energy scale, the error for each
pT bin summarized in Table 3.7 and the smearing effect for the pT binning caused by the
finite energy resolution are considered. As easily expected, when an observed asymmetry
has no dependence on pT , the uncertainties above do not affect the final results of the asym-
metry. On the other hand, steep pT dependence causes a large systematic uncertainty on
the asymmetry. Although currently the observed asymmetries do not show a significant pT

dependence, the uncertainty from the energy calibration is evaluated assuming the case that
ALL = ±0.005× [pT in GeV/c], which is displayed as green lines in Figure 3.43. Similarly,
the gradients of 0.0025 and 0.03 are used in the evaluation for AL and A′

TT , respectively.
Obviously, the error for pT , ∆pT , introduces the product of the gradient and ∆pT as an

error for the asymmetries. While the smearing effect is evaluated utilizing FastMC which
is described in Section 3.5.6. Figure 3.44 expresses the smearing effect for pT . Three peaks
indicate the original pT distribution for π0s in the bins of 1.0 – 1.5, 3.0 – 3.5 and 7.0 –
9.0 GeV/c, respectively, in the measured pT . ERT is simulated for Figure 3.44. Because
the fluctuation of the energy measurement is larger for higher energy clusters, the smearing
effect also becomes larger in higher pT bin. Usually the smearing is larger at the lower pT

edge than the higher edge since the pT distribution is steeply downside. However, in the case
of the ERT sample, it is opposite due to the EMCal trigger as displayed as the red peak
in Figure 3.44. Finally, the systematic uncertainties on the asymmetries are summarized in
Section 3.7.9 for the error from the energy calibration as well as the smearing effect.
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3.7.6 Purity of π0

The uncertainty of π0 purity is listed in Table 3.8. It is propagated to the uncertainty of the
asymmetries following Equation (3.23). The results are summarized in Table 3.7.9.

3.7.7 Background asymmetries

To extract the asymmetries for pure π0, the contribution from the background under the π0

peak is corrected using the background on the both sides of the peak. See Section 3.6.1 about
the calculation of the asymmetries. This procedure is based on the idea that the asymmetries
of the background under the peak and on sides of the peak are identical. Assuming the
asymmetry under the peak is between that of the lower and higher side of the peak, the
discrepancy of the asymmetry between the lower and higher one is assigned as the systematic
uncertainty of the background asymmetry. Since the statistical error of the background
asymmetry is separately propagated to the final results, the discrepancy over the statistical
fluctuation is assigned as the systematic error. Therefore, when the asymmetries of the
lower and higher background are consistent within the statistical error, no systematic error
is assigned. Though obtained error is assumed to be statistical fluctuation because resulting
errors have no significant tendency nor dependence on pT , it is conservatively assigned to the
systematic error. The contribution to the final asymmetries is summarized in Section 3.7.9.

3.7.8 Bunch shuffle

The bunch shuffle is a powerful technique to evaluate the uncertainty for the fill-by-fill and
crossing-by-crossing yield. The validity of the error assignment to the measured yield is
examined by looking at the chi-square of the fitting in Figure 3.37. However, the chi-square
means the probability and only one measurement cannot prove the validity. The bunch shuffle
technique can mimic the many measurement and make it possible to evaluate the chi-square
of the fit statistically. In one shuffle, a helicity combination of each beam crossing in each fill
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are randomly assigned. Then, the same process to extract the asymmetries for the signal and
background window is performed. Therefore, one shuffle provides a set of the asymmetries
and the chi-squares, and many shuffles can produce the distributions of the asymmetries
and the chi-squares. By comparing the chi-square distribution obtained by the bunch shuffle
with the expected ideal distribution, it is examined whether the assigned error to the yield
is proper or not.

Instead of the chi-square distribution, the distribution of ALL by the bunch shuffle, which
is for the signal or background window, is utilized in this analysis. Other asymmetries such
as AL is also available but the results do not and should not change. ALL by the bunch
shuffle should fluctuate following the Gaussian distribution with a width of the real error of
ALL. In other words, if the error is correctly assigned to ALL, it should be consistent with
the width of the ALL distribution obtained by the bunch shuffle. Figure 3.45 displays the
ALL distribution for the signal window and 0.75 < pT < 1.0 GeV/c using MB sample. The
red curve is the Gaussian with a width of the statistical error for ALL and the blue one is
the result of the fit. The larger width of the blue one than the red one implies the additional
uncertainty to the statistical fluctuation in ALL. The red points in Figure 3.46 displays the
ratio of the width by the fitting to the width from the statistics; the blue width divided by
the red width in Figure 3.45. The points more than one implies the systematic uncertainty
over the statistical one.

LLA
-0.006 -0.004 -0.002 0 0.002 0.004 0.006

E
n

tr
y

0

100

200

300

400

500

600

700 Width of statistical error

Fit result

<1.0 GeV/c, Signal window, MB data)T distribution (0.75<pLLA

Figure 3.45: The ALL distribution by the bunch shuffle. This figure is for 0.75 – 1.0 GeV/c
and for the signal window using MB data. The red curve shows the Gaussian distribution
with a width of the statistical error of ALL for the corresponding pT bin. The blue curve is
the result of the Gaussian fit.

Generally, when the statistics become higher, the systematic error becomes significant.
However, the width of ALL distribution is wider than the statistical error in the higher
pT bins, where statistics is much poorer than that in the lower pT bins, as displayed in
Figure 3.46. This phenomenon is due to too small statistics in each crossing to apply the
Poisson distribution for the error of the yield and is reproduced by the numerical simulation.
For the confirmation, the bunch shuffle is executed for ALL calculated with fills merged (fill-
merging ALL) instead of usual ALL calculated fill by fill. Unlike the procedure described in
Section 3.6.1, fill-merging ALL is extracted as; (1) the yield and the integrated luminosity
are accumulated over all fills in the 2005 run, (2) ALL is calculated following Equation (1.56)
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Figure 3.46: The ratio of the width of the ALL distribution (σfit) to the error of ALL (∆ALL)
as a function of pT . The plots on the left side is for the signal window and the right is for
the background window. The top, middle and bottom plots are obtained using the ERT
even crossings, the ERT odd crossings and the MB sample, respectively. The red points are
for ALL calculated fill by fill and then averaged over all fills. The blue points are for ALL

obtained with the helicity dependent yield merged over all fills before the calculation of the
asymmetry. The statistical error is assigned as ∆ALL for the red and blue points. The black
points are calculated in the same way as the blue points but the correction for the systematic
fluctuation of the background level is applied for ∆ALL in addition to the statistical error
(see Section A.14). The blue points in the low pT region are much larger than 1 and out of
the range of these figures.
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using the accumulated yield and the luminosity. By merging fills, the yield is sufficient to
calculate its error following the Poisson distribution. The results of the bunch shuffle using
fill-merging ALL are displayed as blue points in Figure 3.46. The ratio is around one in the
higher pT bins. On the other hand, the blue points are much larger than one in the lower pT

bins. This is well understood by the fill-by-fill fluctuation of the background level and the
results after the correction of the background fluctuation are displayed as the black points
in Figure 3.46. The detail about the fill-merging ALL and the correction of the background
level are described in Section A.14.

When there is a finite asymmetry, the width of ALL distribution by the bunch shuffle
additionally broadens. Its contribution is proportional to the observed asymmetry and can
be calculated using data to be less than 0.03 × ALL. This is much smaller than the error of
ALL, i.e. the width of the ALL distribution. The detail is described in Section A.13.

As the results of the bunch shuffle, the additional systematic uncertainty is assigned for
only pT bins less than 2.0 GeV/c for the MB data sample, where the ratio of the width of the
ALL distribution to the statistical error is significantly larger than one as displayed by the
red points in Figure 3.46. The source of the additional error is supposed to be the fluctuation
of the background because the black points well sit around one. The assigned systematic
uncertainty is summarized in Section 3.7.9.

3.7.9 Summary of the systematic uncertainty

The systematic errors described in the previous subsections are tabulated in Table 3.11 and
3.12 for ALL with the MB sample and the ERT sample, respectively. Each source of the
uncertainty is labeled as follows.

A. Contamination of ATT . (Section 3.7.3)

B. P/PL from the measurement by the local polarimeter. (Section 3.7.3)

C. Relative luminosity. (Section 3.7.4)

D. Absolute scale of the energy calibration. (Section 3.7.5)

E. Mean pT . (Section 3.7.5)

F. Smearing effect for pT bin. (Section 3.7.5)

G. Purity of π0. (Section 3.7.6)

H. Background asymmetry. (Section 3.7.7)

I. Bunch shuffle. (Section 3.7.8)

In addition to these items, there is the scale uncertainty from the beam polarization. See
Section 3.7.2 about the error from the beam polarization. Errors for ATT and AL is similarly
summarized in Section A.16.
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pT A B C D E F G H I total
(GeV/c) (10−5) (10−5)

0.5 – 0.75 47 2 40 11 7 1 7 0 181 192
0.75 – 1.0 69 3 40 11 1 5 3 0 107 134
1.0 – 1.5 37 5 40 11 1 8 5 0 68 88
1.5 – 2.0 159 4 40 11 0 13 4 118 11 203
2.0 – 2.5 192 1 40 11 0 17 5 0 0 197
2.5 – 3.0 175 16 40 11 0 22 12 0 0 182
3.0 – 3.5 540 2 40 11 0 27 81 0 0 548
3.5 – 4.0 1160 60 40 11 0 32 113 1207 0 1680

Table 3.11: The summary of the systematic errors for π0 ALL with MB sample. The unit for
the numbers is 10−5. The quadratic sum of the systematic errors is put in the last column
as the total systematic error. The scale uncertainty from the beam polarization of 9.5 % is
not included in the table.

pT A B C D E F G H I total
(GeV/c) (10−5) (10−5)

0.5 – 0.75 191 25 38 11 2 3 63 0 0 207
0.75 – 1.0 80 2 38 11 1 6 11 0 0 90
1.0 – 1.5 25 1 38 11 1 10 7 134 0 142
1.5 – 2.0 25 2 38 11 0 14 3 0 0 49
2.0 – 2.5 10 0 38 11 0 18 0 0 0 45
2.5 – 3.0 22 2 38 11 0 23 1 0 0 51
3.0 – 3.5 38 8 38 11 0 27 3 42 0 75
3.5 – 4.0 35 19 38 11 0 32 8 0 0 65
4.0 – 5.0 51 2 38 11 0 38 0 0 0 75
5.0 – 6.0 70 7 38 11 0 48 15 0 0 95
6.0 – 7.0 298 2 38 11 1 59 49 0 0 310
7.0 – 9.0 221 26 38 11 2 72 65 860 0 894

Table 3.12: The summary of the systematic errors for π0 ALL with ERT sample. The unit
for the numbers is 10−5. The quadratic sum of the systematic errors is put in the last column
as the total systematic error. The scale uncertainty from the beam polarization of 9.5 % is
not included in the table.
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Chapter 4

Results and discussion

Results of this experiment and discussion on them are described in this chapter. The results
of measured Aπ0

LL are displayed in Section 4.1 and comparison between the data and theory is
described. Subsequently, measured cross section in π0 production is referred in Section 4.2.
In Section 4.3, naive interpretation from measured Aπ0

LL to ∆g is explained. The extraction of
∆g by some global-analysis groups including the present results is introduced in Section 4.4.
Finally, further prospects are described in Section 4.5.

4.1 Results

Results of ALL in π0 production are displayed in Figure 4.1. Corresponding values are
summarized in Table 4.1. For the points in Figure 4.1, MB data sample is used at less than
1.0 GeV/c and ERT sample is used at more than 1.0 GeV/c to keep high statistics. For ERT
sample, the data for even and odd bunch crossings are averaged. Band at the bottom of
Figure 4.1 indicates size of total systematic uncertainty except for normalization uncertainty
of 9.5 % from the beam polarization measurement. See Section 3.7.2 about the uncertainty
from the beam polarization. Four theory curves based on NLO pQCD calculation are also
drawn in Figure 4.1. These calculations are performed following Equation (1.48) with the
factorization scale set to pT of π0.1 Difference of the calculations is the ∆g input [84, 92].
GRSV-std is calculated with ∆g of the best fit in the global analysis by GRSV group [67],
where only polarized DIS data are used. ∆g = +g, ∆g = −g and ∆g = 0 indicate the case
that ∆g(x) is equal to g(x), −g(x) and 0, respectively, at the input scale of Q2 = 0.4 GeV2.2

Unpolarized PDF by CTEQ group [49] and FF by KKP group [29] are adopted in common
in these calculations.

To compare the data and the theoretical calculation, chi-square between the data and
the theoretical calculations, as well as the case of ALL = 0, and probability are calculated
and summarized in Table 4.2. Considering validity of pQCD calculation, the chi-square is
computed for two pT range; pT > 1 GeV/c and pT > 2 GeV/c. The soft QCD component
at low pT is discussed in Section 4.2 based on the measured cross section. The case of the
gluon polarized maximally, ∆g = +g and ∆g = −g, is rejected by the measurement. Other
models are still consistent with the data. To extract shape of ∆g as a function of Bjorken

1There are three scales are involved in the calculation. One is the scale of PDF, µF , which is described as
√

Q2 in this thesis. The second is the scale of FF, µ′
F . The other is the renormalization scale, µR. In the

calculation, these are set to same value; µ ≡ µF = µ′
F = µR.

2∆g at the scale of Q2 = p2
T is quite different from that at the input scale of Q2 = 0.4 GeV2 in pT range of

our measurement. As explained in Section 1.5.4, it is because PDF at low Q2 evolves rapidly as Q2 increases.
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Figure 4.1: Aπ0

LL as a function of pT . Error bars for the points are only statistical. Bottom
gray band indicates systematic uncertainties, which do not include 9.5 % normalization un-
certainty from the beam polarization. Four theoretical calculations with different ∆g input
are superposed [84, 93]. They employ CTEQ PDF [49] and KKP FF [29] in the calculation.
Factorization scale is set to pT of π0 in the theories. ∆g of the best fit in the global anal-
ysis by GRSV group [67] is applied for GRSV-std. ∆g = +g, −g and 0 correspond to the
case of positively largest ∆g, negatively largest ∆g and unpolarized ∆g at the input scale
of Q2 = 0.4 GeV2. The theoretical calculations are unavailable at low pT region due to
inapplicable domain of pQCD.

pT range Mean pT Aπ0

LL

(GeV/c) (GeV/c) (10−2)

0.5 – 0.75 0.62 0.15 ± 0.27 ± 0.19
0.75 – 1.0 0.86 0.19 ± 0.25 ± 0.13
1.0 – 1.5 1.29 −0.05 ± 0.17 ± 0.14
1.5 – 2.0 1.75 0.10 ± 0.12 ± 0.05
2.0 – 2.5 2.22 −0.01 ± 0.13 ± 0.04
2.5 – 3.0 2.72 −0.13 ± 0.18 ± 0.05
3.0 – 3.5 3.21 0.49 ± 0.27 ± 0.07
3.5 – 4.0 3.72 1.21 ± 0.42 ± 0.07
4.0 – 5.0 4.38 0.10 ± 0.51 ± 0.07
5.0 – 6.0 5.40 0.44 ± 1.03 ± 0.10
6.0 – 7.0 6.41 0.15 ± 1.86 ± 0.31
7.0 – 9.0 7.72 −1.66 ± 2.57 ± 0.89

Table 4.1: Values of Aπ0

LL. The first uncertainty in the third column is statistical and the
second one is systematic. Normalization uncertainty of 9.5 % from the beam polarization is
not included in the systematic uncertainty.
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x, an interpretation from Aπ0

LL to ∆g is discussed with a simple model in Section 4.3. More
detail and proper extraction of ∆g is executed by orthodox global analysis. The results and
comments by some global analysis group are introduced in Section 4.4.

χ2 (Probability (%))
Model pT > 1 GeV/c pT > 2 GeV/c

(NDF = 10) (NDF = 8)

ALL = 0 12.8 (23.5) 12.2 (14.3)
GRSV-std 10.2 – 10.7 (42.0 – 38.5) 10.0 – 10.5 (26.3 – 23.4)
∆g = +g 264 – 395 (< 10−18) 236 – 352 (< 10−18)
∆g = 0 11.9 – 11.7 (29.1 – 30.3) 11.4 – 11.2 (18.1 – 18.9)

∆g = −g 59.3 – 87.4 (< 10−6) 51.1 – 74.5 (< 10−5)

Table 4.2: chi-square (χ2) and probability between the data and theoretical calculations,
as well as ALL = 0. For the calculation, quadratic sum of the statistical and systematic
uncertainty except for the normalization uncertainty is used. The range of chi-square and
probability is from the normalization uncertainty of 9.5 % from the beam polarization. Note
that normalization uncertainty does not change significance of the data from 0.

In Figure 4.2, Aπ0

LL reported in this paper are compared with the measurement in 2003 and
2004 by the PHENIX collaboration. Error bars in the figure indicate statistical uncertainty
only. Systematic uncertainties of 2003 – 2004 data are negligible compared to the statistical
uncertainty. Normalization uncertainties from the beam polarization are 18 % for 2003 –
2004 data and 9.5 % for the data of this experiment, but they are not fully uncorrelated. To
examine consistency between these data, chi-square between them is calculated to be 3.07
with NDF of 4, where only statistical error is considered. At the comparison, points of this
experiment in the corresponding bin of 2003 – 2004 data point are combined. Mean pT for
the combined bins of this experiment is almost same as those of 2003 – 2004 data. The
obtained chi-square corresponds to probability of 54.6 % and we conclude that these data are
consistent.

Figure 4.3 displays ATT in π0 production and Table 4.3 shows the values. In the same
way as the case of ALL, MB sample is used for pT less than 1.0 GeV/c and ERT sample for pT

more than 1.0 GeV/c. ATT is obtained from measured asymmetry A′
TT , which is displayed in

Figure 3.40, by correcting the azimuthal angle dependence of ATT . The correction is applied
by simply dividing A′

TT by the factor of 0.588 which is calculated based on the detector
acceptance in the measurement assuming that the azimuthal angle dependence is cos(2φ).
See Section 1.12 about the factor. Chi-square between the data points and ATT = 0 is 9.29,
which is probability of 67.8 % with NDF of 12, and we conclude that the data of Aπ0

TT is
consistent with 0 within uncertainty of the measurement. In the calculation, full pT range
measured is used and both statistical and systematic errors are considered. Measurement
of Aπ0

TT has possibility to probe transversity distribution in the proton. However, pQCD-

based calculation [94] predicts that size of Aπ0

TT is smaller than 0.001 in pT range of our
measurement. The reason of small ALL predicted is that gluons does not contribute to
ATT and the asymmetry of the QCD subprocess is small. More details are in Section 1.5.3.
In the calculation, δq(x) is assumed to be positive and on the bound of the inequality of
Equation (1.29) because of no information about the transversity. Based on the calculation,
it is quite difficult to constrain transversity by the precision of the data. In PHENIX, the
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Figure 4.2: Comparison of Aπ0

LL between this experiment and the data measured by PHENIX
in 2003 – 2004. Error bars indicate only statistical uncertainty.

single transverse-spin asymmetry is also measured and published [95] as well.
Figure 4.4 displays AL in π0 production and Table 4.4 lists the values. The points at

pT less than 1.0 GeV/c are from MB sample and those at pT more than 1.0 GeV/c are
ERT sample. In ERT data sample, results from even and odd crossings are combined. Chi-
square/NDF and corresponding probability between the data and AL = 0 are evaluated to
be 5.08/12 and 95.5 %, respectively, where both statistical and systematic errors are used.
If AL has finite value, it indicates the parity violation. Because the weak interaction which
violate the parity is expected to be negligible at the energy scale in this experiment, AL in
π0 production is also expected to be zero. That is satisfied in our measurement.

4.2 Cross section

As introduced in Chapter 1, the framework to interpret experimental data is based on pQCD.
Therefore, it is important to evaluate validity of pQCD in the kinematical region of our mea-
surement. One of the tests of pQCD is whether pQCD can reproduce measured cross section.
As well as asymmetries, the PHENIX experiment published the results of cross sections of
inclusive π0 and charged pions. π0 is detected using EMCal explained in Section 2.3.4 and
charged pions are measured at the same kinematical region using tracking chamber described
in Section 2.3.1. Hence the comparison of these cross sections between data and theory are
useful to evaluate the pQCD validity for the π0 production at given pT range.

Figure 4.5 displays cross sections for inclusive π0 production at
√

s = 200 GeV and
pseudorapidity of −0.35 to 0.35 [96]. Lines on the figure are NLO pQCD calculation [84,93]
with CTEQ PDF [49] and KKP FF [29]. Empirically, the energy scale of factorization µ
is set to pT of π0 (solid line).3 To evaluate systematic uncertainty of the calculation, the

3There are three scales are involved in the calculation. One is the scale of PDF, µF , which is described as
√

Q2 in Section 1.5.4. The second is the scale of FF, µ′
F . The other is the renormalization scale, µR. In the

calculation, these are set to same value; µ ≡ µF = µ′
F = µR.
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Figure 4.3: Aπ0

TT as a function of pT . Error bars for the points are only statistical. Bottom
gray band indicates systematic uncertainties, which do not include 10.7 % normalization
uncertainty from the beam polarization.

pT range Mean pT Aπ0

TT

(GeV/c) (GeV/c) (10−2)

0.5 – 0.75 0.62 0.68 ± 4.71 ± 3.29
0.75 – 1.0 0.86 3.40 ± 4.41 ± 0.60
1.0 – 1.5 1.29 1.57 ± 1.29 ± 0.79
1.5 – 2.0 1.75 1.93 ± 0.92 ± 0.43
2.0 – 2.5 2.22 −0.09 ± 1.01 ± 0.45
2.5 – 3.0 2.72 1.12 ± 1.39 ± 0.74
3.0 – 3.5 3.21 2.31 ± 2.06 ± 0.50
3.5 – 4.0 3.72 −0.84 ± 3.11 ± 0.52
4.0 – 5.0 4.38 −2.02 ± 3.80 ± 0.57
5.0 – 6.0 5.40 0.36 ± 7.59 ± 1.85
6.0 – 7.0 6.41 20.22 ± 13.68 ± 5.26
7.0 – 9.0 7.72 5.86 ± 19.35 ± 0.85

Table 4.3: Values of Aπ0

TT . The first uncertainty in the third column is statistical and the
second one is systematic. Normalization uncertainty of 10.7 % from the beam polarization is
not included in the systematic uncertainty.
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Figure 4.4: Aπ0

L as a function of pT . Error bars for the points are only statistical. Bottom gray
band indicates systematic uncertainties, which do not include 4.7 % normalization uncertainty
from the beam polarization.

pT range Mean pT Aπ0

L

(GeV/c) (GeV/c) (10−2)

0.5 – 0.75 0.62 0.135 ± 0.094 ± 0.085
0.75 – 1.0 0.86 −0.006 ± 0.089 ± 0.046
1.0 – 1.5 1.29 −0.052 ± 0.060 ± 0.020
1.5 – 2.0 1.75 0.006 ± 0.044 ± 0.025
2.0 – 2.5 2.22 −0.065 ± 0.049 ± 0.022
2.5 – 3.0 2.72 −0.022 ± 0.067 ± 0.023
3.0 – 3.5 3.21 −0.034 ± 0.100 ± 0.033
3.5 – 4.0 3.72 −0.006 ± 0.151 ± 0.025
4.0 – 5.0 4.38 0.193 ± 0.187 ± 0.086
5.0 – 6.0 5.40 0.099 ± 0.375 ± 0.057
6.0 – 7.0 6.41 0.516 ± 0.674 ± 0.063
7.0 – 9.0 7.72 −0.053 ± 0.933 ± 0.045

Table 4.4: Values of Aπ0

L . The first uncertainty in the third column is statistical and the
second one is systematic. Normalization uncertainty of 4.7 % from the beam polarization is
not included in the systematic uncertainty.
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cross section is calculated with different energy scale, µ = pT

2 (dotted line) and µ = 2pT

(dashed line). At the bottom of Figure 4.5, difference between the data and the calculation
is displayed. The pQCD calculation reproduces the data well over 1 – 20 GeV/c in pT and
this result supports the validity of pQCD-based framework in the evaluation of Aπ0

LL.
One of the concerns is the contribution of soft QCD process at low pT region, which

cannot be calculated by perturbation theory. The contribution was estimated using the
data of charged pions. Inset of Figure 4.5 displays measured cross section of charged pions
superposed on that of π0. We assumed that the cross section at pT < 0.8 GeV/c is dominated
by soft QCD and the soft QCD component is represented by an exponential function. By
fitting the cross section of charged pions at the pT range to the exponential function (dashed
line in the inset), the fraction of the soft QCD component is estimated to be less than 10 %
at pT of 2.0 – 2.5 GeV/c. On the basis of this study, we applied an interpretation from Aπ0

LL

to ∆g using the data more than 2.0 GeV/c in pT in Section 4.3.

4.3 Interpretation from Aπ0

LL to ∆g

In Section 4.1, our Aπ0

LL results and theoretical calculations are compared. In this section, x

dependence of ∆g is extracted based on the calculations. To establish relation between Aπ0

LL

and ∆g, we adopt the approximation of Equation (1.50). Then, dependence of Aπ0

LL on ∆g is
parameterized based on theoretical calculations. Finally, function form of ∆g is assumed and
the measured Aπ0

LL is fitted with the shape of ∆g as free parameters. As well as the uncertainty
of the measurement, the model itself would have uncertainty. However, we don’t evaluate the
uncertainty of the model and only brief and qualitative discussion about the obtained ∆g is
made in this section. In Section 4.4, ∆g extracted by AAC global analysis [70] is introduced
and discussed in more detail.

In this section, a following equation is used instead of Equation (1.50) just for a technical
reason;

Aπ0

LL(pT ) =

(

C2(pT )

[

∆g(ξ)

g(ξ)

]

+ C1(pT )

)2

+ C0(pT ).

ξ ≡ 〈x1〉 = 〈x2〉, depends on pT . (4.1)

C0,1,2 include contributions from FF, the partonic cross sections and PDF except for ∆g. x1

and x2 indicate Bjorken x of partons in the initial two proton beams. In the approximation,
x1 and x2 are represented by its mean value and the mean values are same. It is written as
ξ. ξ should depend on pT of π0. It is notable that each component in the right hand side of
the equation depends on pT . In the equation, ∆g(ξ) appears as a ratio to g(ξ). That is also

convenient to alleviate Q2 dependence of PDF. Figure 4.6 displays the variation of ∆g(x)
g(x) for

various Q2. The fluctuation of ∆g(x)
g(x) at a certain Bjorken x is roughly within 0.1.

In this analysis, we don’t care about contents of C0,1,2 and regard them as parameters.
If more than three relations between ALL and ∆g

g are known, C0,1,2 can be written by the

known values of ALL and ∆g
g by solving Equation (4.1). For example, when one obtains three

theoretical models of ALL and corresponding ∆g
g labeled as mod.A, mod.B and mod.C, P0,1,2
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Figure 4.5: Cross sections in inclusive π0 production in pp collision at
√

s = 200 GeV (red
points). Error bars, which are smaller than the points, are quadratic sum of statistical
uncertainty and experimental systematic uncertainty except for normalization uncertainty of
9.7 %. The normalization uncertainty is from the luminosity measurement. Theoretical curves
using CTEQ PDF [49] and KKP FF [29] are superposed in the figure [84, 93]. Factorization
scale of µ = pT

2 , pT and 2pT is adopted for dotted, solid and dashed line, respectively. The
Bottom figure displays difference between the data and the theory. Cross section of inclusive
charged pions are drawn as black points in the inset of the figure. Dashed line in the inset is
obtained by fitting the cross section of charged pions at pT < 0.8 GeV/c to an exponential
function for estimation of the soft QCD component. In both cross sections, measured coverage
in pseudorapidity is −0.35 to 0.35.

118



Bjorken x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

gg∆

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: ∆g
g for GRSV-std model as a function of Bjorken x. Each curve is for a certain

Q2 in a range of 1 –100 GeV2. Unpolarized PDF by GRV group [50] is used instead of CTEQ
group [49] because initial Q2 in global analysis by CTEQ is (1.3)2 GeV2 and PDF at smaller
Q2 than the value is not published.

can be extracted by calculating
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1 ∆gmod.A(ξ)
g(ξ)
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Amod.A
LL (pT )

Amod.B
LL (pT )

Amod.C
LL (pT )






. (4.2)

It is important to remember that relation of ξ and pT is needed to obtain P0,1,2 or C0,1,2 as
a function of pT . In this thesis, four theoretical curves displayed in Figure 4.1 were adopted;
GRSV-std, ∆g = +g, ∆g = 0 and ∆g = −g. For each model, we obtained ∆g as a function of
Bjorken x, its Q2 evolution and corresponding Aπ0

LL through cooperation with theorists [97].
In this case, because four models are available, C0,1,2 are obtained by fitting scatter plot of
ALL and ∆g

g to Equation (4.1), as displayed in Figure 4.7, instead of using Equation (4.2).

Scale of Q2 for ∆g
g is set to p2

T as usually adopted by literature.

At the same time, the relation between ξ and pT is determined. pT of measured π0 is
approximately related to ξ as following equation.

pT ∼ ξζPbeam, ζ = 〈z〉, (4.3)

where z is for FF and ζ indicates mean value of z. Pbeam is the beam momentum, which is
100 GeV/c in this thesis. The longitudinal component of momentum of π0 is ignored in this
equation because the detector is located at the central region. ζ is regarded as a parameter
and determined so that the fitting in extracting C0,1,2 is optimized. Figure 4.7 displays a
sample of the fitting at pT = 4.25 GeV/c and ζ = 0.5. Points are well on a quadratic function.
The fitting is performed at many pT points in 1.25 – 13.25 GeV/c for a certain value of ζ
and most appropriate ζ is estimated by minimizing combined chi-square of the fittings over
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all pT range. Figure 4.8 displays combined chi-square of the fittings as a function of ζ. Error
of each point in figures like Figure 4.7 is set to a constant in all fittings. The chi-square has
a minimum around ζ = 0.5, and therefore we fixed ζ at 0.5 in this analysis. C0,1,2 obtained
with ζ = 0.5 is displayed as a function of pT in Figure 4.9. C0,1,2 are parameterized by fitting
them to a suitable function as in Figure 4.9.
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Figure 4.7: ∆g
g input and corresponding Aπ0

LL.
This figure is produced at pT = 4.25 GeV/c
and the case of ζ = 0.5. Curve on the figure
indicates the fit result to quadratic function.
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polynomial function and the fit results are shown as solid curve.

To apply the model developed here to measured Aπ0

LL, it is necessary to assume a function
form of ∆g. We assumed

∆g(ξ, Q2 = p2
T )

g(ξ, Q2 = p2
T )

= K1ξ + K2ξ
2, (4.4)

where K1 and K2 are free parameters in the fitting to data. In Equation (4.4), PDF is clearly
described as a function of Bjorken x and Q2, and they can be written by pT in this model.
Therefore, as shown by Equation (4.1), Aπ0

LL is written as a function of pT with parameters of

K1 and K2, and ∆g can be extracted by fitting measured Aπ0

LL to Equation (4.1). To obtain
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∆g at a certain Q2, evolution by Q2 is needed because ∆g
g in Equation (4.1) is a value at

Q2 = p2
T . The evolution was performed by interpolation following the known ∆g calculation.

Figure 4.10 displays scatter plot of ∆g with Bjorken x of 0.1 at Q2 = 1 GeV2 and 25 GeV2.
Four points are from theoretical calculations used to build the model and curve is obtained by
spline approximation. For example, the Q2 evolution from 25 GeV2 to 1 GeV2 for arbitrary
∆g with x = 0.1 was performed using the curve in Figure 4.10.
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Figure 4.10: Comparison of ∆g
g with Bjorken x of 0.1 at Q2 = 25 GeV2 and that at Q2 =

1 GeV2. Curve is obtained by spline approximation.

To test the model developed in this section, reproducibility of four theoretical calculations,
GRSV-std, ∆g = +g, ∆g = 0 and ∆g = −g, is examined. The left panel of Figure 4.11
displays Aπ0

LL as a function of pT of the theories. Each set of points indicates the original
calculation and the curves on the points are results of the fitting to Equation (4.1). Right of
Figure 4.11 displays ∆g

g as a function of Bjorken x (= ξ) at Q2 = 1 GeV2. Dashed lines are

original theoretical calculations and solid lines are extracted ∆g
g by the fitting. As displayed

in Figure 4.11, the model reproduces the original values of ∆g
g well.
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Figure 4.11: (Left) Aπ0

LL as a function of pT for theoretical calculations by GRSV group [67].
Points are the original calculations and lines are results of the fitting to Equation (4.1).
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Then, the model was applied to measured data. As described in Section 4.2, data at low
pT region have possibility to include effect of soft QCD. For this reason, we limited pT range
used in the fitting to more than 2 GeV/c. Figure 4.12 displays results of the fitting to the
data. Because Aπ0

LL is approximately written by a quadratic function of ∆g, it is possible that

two solutions of ∆g are derived from single Aπ0

LL measurement. As expected from tendency

of the theoretical curves, predicted Aπ0

LL of ∆g = −g model becomes smaller than the line of
∆g = 0 and therefore this duality is likely to be disentangled at higher pT region, more than
∼15 GeV/c. However, the data in this thesis do not cover so high pT region. For this reason,
two results from the fitting are obtained as displayed in left of Figure 4.12 for the result of
positive ∆g and right for negative ∆g.
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Figure 4.12: Aπ0

LL as a function of pT . Data points are from this experiment. Error bars of
the points are quadratic sum of the statistical and systematic uncertainty, except for 9.5 %
normalization uncertainty from the beam polarization. Lines are results of the fitting to
Equation (4.1) and bands indicate the uncertainty of the fitting. Left figure is for solution of
positive ∆g and right figure is for negative ∆g. Chi-squares of the fitting are 9.83 and 9.77
for the positive and negative ∆g solution, respectively, with NDF of 6.

Obtained results of the fitting can be converted into ∆g as a function of Bjorken x, which
is represented by ξ. Figure 4.13 displays x∆g as a function of Bjorken x at Q2 = 1 GeV2.
As well as four theory curve by GRSV group, ∆g extracted by global analysis of AAC group
in 2004 [72] is also on the figure. As explained above, two ∆g solutions are obtained from
this experiment. For the results in this figure, normalization uncertainty of 9.5 % from beam
polarization is considered. To evaluate the uncertainty, the fitting was performed with three
cases of the beam polarization; P , P +∆P and P −∆P , where P is the mean value and ∆P
is the uncertainty of the beam polarization. Then, the uncertainty for ∆g is assigned so as to
cover any cases of the fittings. Contribution from the uncertainty of the beam polarization
enlarges the size of the error of ∆g by less than 10 %. Other uncertainties such as those from
unpolarized PDF and FF are not considered in the results.

Though it is hard to derive conclusive statement from ∆g extracted here because of
difficulty in estimation of uncertainty of the naive model, some knowledge are obtained. One
is the capability of our data to significantly reduce the uncertainty of ∆g. This statement
is supported by the recently published literature [69, 70]. The second is that, however, the
measurement in this thesis provides the information of ∆g at limited x range. To cover wider
x, the measurement at larger pT or with different

√
s is necessary. The other is two solution

of the positive and negative ∆g. This problem is caused by the relation of the quadratic
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Figure 4.13: x∆g as a function of Bjorken x at Q2 = 1 GeV2. Red and blue band represent
∆g extracted from the data of this experiment. ∆g and its uncertainty extracted by AAC
group in 2004 [72], as well as four theoretical calculations by GRSV group [67], are superposed
in the figure.

function between Aπ0

LL and ∆g, like Equation (4.1). It is difficult to disentangle the duality
by the measurement of π0. Therefore, other probes are needed to determine the sign of ∆g.
It must be noted that the analysis of AAC in 2004 did not consider negative ∆g and they also
referred to it in a paper published recently [70]. These issues presented here are discussed in
more detail in Section 4.4 and 4.5.

4.4 Results and comments by global analysis

Currently, polarized PDFs are extracted from many experimental data by global analysis
[66–71] described in Section 1.8.2. For polarized PDF, most data points are obtained by
polarized DIS experiments. The first measurement of Aπ0

LL by the PHENIX experiment was
published in 2004 [2] and improved in [3]. However, they cannot constrain ∆g very much
due to large uncertainty as described in Section 1.11. Statistics of new measurement in this
thesis is larger than [3] by a factor of ∼25 in terms of figure-of-merit and the uncertainty of
Aπ0

LL becomes smaller by a factor of ∼5. Moreover, larger statistics make it possible to extend
the measured pT range up to 9.0 GeV/c. In this background, the new result is expected to
contribute to gain further knowledge on ∆g.

In fact, AAC group has already performed global analysis [70] with our preliminary re-
sults [98]. Figure 4.14 displays polarized gluon PDF by AAC at Q2 = 1 GeV2, as well as
experimental results using SIDIS. Three types of AAC results are displayed in Figure 4.14.
One is the result with only DIS data (Type 2). Other two types incorporate Aπ0

LL in addition
to DIS data (Type 1 and 3). Difference of Type 1 and 3 corresponds to positive and negative
∆g solution. ∆g of Type 1 (Type 3) is obtained by fitting data with initial function form of
∆g positive (negative). No practical difference in chi-square of the fit results between Type 1
and 3. No significant change is also observed in the quark and the antiquark distributions.
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The resulting ∆g’s of Type 1 and 3 are much different at small x (x < 0.1), while they are
similar at large x. At large x, both ∆g is positive. The reason is analyzed in [70] and is
understood as requirement by DIS measurements with deuteron target. On the other hand,
∆g of Type 3 is negative at small x as expected, but much larger uncertainty is assigned
than the result of Type 1. This is due to the functional form of ∆g. It is emphasized in [70]
that the direct constraint in ∆g by measurements is only at large x and the constraint at
small x is only from Q2 evolution of DIS data and requirement of smoothness of functional
form. It implies that Type-1 ∆g has possibility to carry similar size of uncertainty to Type
3, too. In addition to DIS and Aπ0

LL, ∆g is extracted by SIDIS with high-pT hadron pro-
duction. SMC [73], HERMES [74] and COMPASS [75] collaborations reported their results.
Their results have moderate size of uncertainty and are consistent with the results by AAC
as displayed in Figure 4.14. The integral over x of polarized PDF by AAC group is tabu-
lated in Table 4.5. Based on Equation (1.24), the proton spin can currently be explained by
contributions only from quarks, antiquarks and gluon spin, though still large uncertainty is
assigned to ∆g.
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x

x
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(x
) DIS + π0 

(Type 3)
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DIS + π0 
(Type 1)
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HERMES COMPASS  Q² < 1 GeV²

AAC Type 1 (DIS + π°)

AAC Type 2 (DIS only)

AAC Type 3 (DIS + π°)

Figure 4.14: x∆g(x) as a function of Bjorken x obtained by AAC group [70] with experimental
results using SIDIS by SMC [73], HERMES [74] and COMPASS [75]. Result of Type 2 is
obtained by only DIS data. Type 1 and 3 are extracted incorporating our preliminary Aπ0

LL

data in addition to DIS data. Initial functional form of ∆g is positive in Type 1 and negative
in Type 3. Because SMC, HERMES and COMPASS reported ∆g(x)

g(x) , g(x) by GRV group [50]

is used to obtain ∆g(x) for the comparison.

In global analysis by DNS group [69], Aπ0

LL is not used in their analysis but they discussed

capability of Aπ0

LL measurement. Figure 4.15 displays prediction of Aπ0

LL by DNS group with
estimation of measurements by the PHENIX experiment. Comparing the estimation for this
thesis (tagged as Run 5) to the range of dashed-dotted line denoting uncertainty from PDF,
it is indicated that our data has potential to constrain polarized PDF.
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∆Σ ∆g ∆q̄

Type 1 (DIS +Aπ0

LL, positive ∆g) 0.27 ± 0.07 0.31 ± 0.32 −0.05 ± 0.01
Type 2 (DIS only) 0.25 ± 0.10 0.47 ± 1.08 −0.06 ± 0.02

Type 3 (DIS +Aπ0

LL, negative ∆g) −0.56 ± 2.16

Table 4.5: Integral of polarized PDF over Bjorken x at Q2 = 1 GeV2 by AAC [70]. ∆Σ
indicates sum of both quarks and antiquarks; ∆Σ(x) =

∑

q [q(x) + q̄(x)]. AAC group assumes
symmetric sea quark distribution; ∆q̄(x) ≡ ∆ū(x) = ∆d̄(x) = ∆s̄(x) = ∆s(x). Integral of
quarks and antiquarks PDF for Type 3 is not described in [70], though they mention that no
significant difference between Type 1 and 3 are observed for quarks and antiquarks.

KRE NLO
KRE NLO ∆χ2=2%
KKP NLO

pT

AπALL

0

(GeV/c)

Run 5

2006-7

-0.02

-0.01

0

0.01

0.02

0.03

0 2 4 6 8 10 12 14

Figure 4.15: NLO pQCD-based prediction of Aπ0

LL using polarized PDF obtained by DNS
group [69]. Solid line and red dashed line denote expected value with KRE [28] and KKP [29]
fragmentation function, respectively. Dashed-dotted line indicates the uncertainty which is
derived from uncertainty of PDFs. DNS group assigns the uncertainty as the range where
chi-square of the global analysis increases by 2 %. Error bars of the points on the solid line
(KRE NLO) represent expected uncertainty of the measurement by the PHENIX experiment.
The points tagged as Run 5 corresponds to the data taken in 2005 and those tagged as 2006-7
is for 2006 and 2007. (The figure is as it is in the reference. Therefore, though the points of
Run 5 correspond to the data in this thesis, they are not exactly same.)
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4.5 For further knowledge on polarized PDF

As described in Section 4.3 and 4.4, our data will significantly reduce uncertainty of ∆g.
However, the uncertainty is still large and there are still some concerns. One is duality of
sign of ∆g. At large Bjorken x, the sign turns out to be positive by DIS measurement with
deuteron target. However, both positive and negative ∆g is acceptable at small x region.
As explained in Section 4.3 and 4.4, it is difficult to disentangle the duality of ∆g sign by
measurement of Aπ0

LL, especially at small x (x <∼ 0.2), where gluon-gluon scattering at QCD
sub-process is dominant in π0 production. One of the favorable method to determine the
sign of ∆g is ALL in prompt photon production at pp collision. Prompt photon is produced
directly at QCD sub-process as displayed in Figure 4.16. At the leading order, prompt photon
is produced only via quark-antiquark or gluon-quark scattering, and there is no contribution
from gluon-gluon scattering. For this reason, prompt-photon ALL is approximated to be
linear function of ∆g and can disentangle the sign of ∆g. Currently from PHENIX, only
cross section is published for prompt photon [99] because statistics of prompt photon is much
smaller than π0. In the near future, the measurement of prompt photon ALL in PHENIX is
expected to achieve sufficient accuracy to constrain ∆g as introduced in Section 4.6.

Figure 4.16: Diagrams of prompt photon production for QCD sub-process of the leading
order.

Another concern on ∆g is coverage of Bjorken x by measurements and it is deeply related
to the first concern described above. As pointed out in Section 4.4, direct constraint by
experiments is only at large x region (x >∼ 0.1). This introduces large uncertainty and
ambiguity of sign of ∆g at small x. It must be noted that Type 1, as well as Type 3,
in Figure 4.14 potentially has large uncertainty at small x. To determine small-x PDF,
RHIC is planning to collide protons at center-of-mass energy of 500 GeV. It will probe
relatively smaller x region, up to ∼ 0.01 in the case of π0 production, for example. Though
there is no distinct programs for polarized experiments, it is important to remember that
DIS experiments in large Q2 range constrain gluon distribution at small x in the case of
unpolarized PDF. On the other hand, experiments at JLab intend to reach toward large x
region close to 0.8 with polarized electron beam and various fixed target including proton,
deuteron and nucleus [100].

Recently, uncertainty of FF is discussed in [32] and it influences uncertainty of global
analysis for PDF. Needless to say about importance of constraining FF by experiment, reac-
tions which do not require FF, such as prompt photon and jet, are also available to exclude
the ambiguity of FF. However, they also have disadvantage, small statistics in prompt pho-
ton production and large uncertainty in momentum measurement for jet. For these reasons,
it is also important to utilize various kinds of probes including meson and baryon produc-
tion in addition to π0 of this thesis. ALL’s in jet-like multi-particles, charged pions, η and
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J/ψ production are presented from the PHENIX experiment, and jet and π0 from the STAR
experiment at RHIC. However, uncertainty is presently large mainly due to short of statistics.

In AAC group [70] and some other groups [66,68,71], symmetric polarized sea-quark dis-
tribution is assumed because experimental data is poor for decomposition of quark flavor.
Some groups [67, 69] attempt to discard flavor-SU(3) symmetry in global analysis. For the
purpose, only SIDIS data is currently available. However, uncertainties on sea quarks are
large as presumed. In particular, separation between ū and d̄ quark is more difficult than that
of s quark because s quark in the proton can be identified by detecting hadrons containing s
quark such as K meson while u and d quarks is easy to be produced by pair creation. HER-
MES collaboration mentions based on SIDIS measurement that no significant observation of
breaking flavor-SU(3) sea distribution is observed within error of the measurement [101]. At
PHENIX, the separation of ū and d̄ quark will be performed through measurement of W
boson taking advantage that W selects quark flavor; W+ produced by annihilation of u and
d̄ quark and W− from ū and d. For s quark PDF, SIDIS experiments will be continued, for
example, at JLab. Another promising tool is DIS with neutrino beam utilizing weak current
which selects quark flavor. Such neutrino DIS will be feasible at J-PARC in near future.

The last unknown contribution to the proton spin is orbital angular momentum of partons,
L. Until now, we have almost no knowledge about L. To extract L, Deeply virtual Compton
scattering (DVCS), ep → e′p′γ where γ is photon, is suggested. HERMES collaboration
published various kinds of asymmetries in DVCS [102,103]. DVCS is also measured at JLab
[104]. However, the relation of DVCS and L is not established and no explicit statement
about L is obtained.

4.6 Future measurement in PHENIX

Following the 2005 run, RHIC ran polarized pp experiment in 2006 and PHENIX accumulated
data of 10.7 pb−1 at

√
s = 200 GeV. Average beam polarization was about 60 % during the

data taking period. Currently, preliminary results of Aπ0

LL have already been presented [105].
Owing to higher statistics and polarization than the 2005 run, the accuracy of the data
become nearly twice better. The 2006 data is more staying around zero and prefer GRSV
∆g = 0 than GRSV-std. In [105], other possibility is also discussed. It is an assumption of ∆g
with node around x = 0.1 (GSC-NLO) [66] as displayed in Figure 4.17. The first moment of
GSC-NLO is ∼1.0. Meanwhile, because the integral of ∆g over x region for the measurement
is small, Aπ0

LL with the GSC-NLO input becomes nearly zero. The suggestion also implies
the importance of the measurement over wide Bjorken x and with detail x dependence. As
well as 200 GeV, the data of 0.1 pb−1 with

√
s = 62.4 GeV were obtained in 2006 and the

preliminary Aπ0

LL were presented [106]. Because of lower energy than our data, the data at
62.4 GeV corresponds to relatively higher Bjorken x than our data. However, because the
integrated luminosity is smaller than our data and the cross section of π0 is also small about
twice at the same pT compared to 200 GeV [105], the precision of the data is moderate.
Nevertheless, the data disfavor large ∆g and consistent with our results at 200 GeV.

Presently, the polarized pp run at RHIC is planed for years. In 2008, another run will be
performed at

√
s = 200 GeV. The goal of the 2008 run is integrated luminosity of 71 pb−1

with average bean polarization of 65 %. It is about 90 times larger statistics than our data
in the 2005 run in terms of figure-of-merit for ALL. At this stage, much better accuracy will
be achieved in Aπ0

LL. Moreover, pT range of the measurement will be extended and that is

directly related to the wider Bjorken x region. As well as Aπ0

LL, the measurement of ALL in
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Figure 4.17: x∆g of GSC-NLO model as a function of Bjorken x. The x range for our data
is indicated by the blue window.

prompt photon production will start to constrain ∆g. Figure 4.18 displays ALL in π0 and
prompt photon production with similar statistics in the 2008 run (integrated luminosity of
65 pb−1 and polarization of 70 %). Prompt photon ALL is expected to determine the sign
of ∆g, which is one of the difficulty in our results via π0. In addition, measurements with
other probes such as jet-like multi-particles, charged pions, η, J/ψ and single electrons, will
be more significant with large statistics.

Figure 4.18: The expected accuracy of the measurement at PHENIX with integrated lumi-
nosity of 65 pb−1 and polarization of 70 %. The left is for π0 ALL and the right is for prompt
photon ALL. The green band indicates theoretical uncertainty depending on the ∆g input.
The theoretical calculation is based on ∆g of GRSV group [67], which is same as in Fig-
ure 4.1. In the plot for prompt photon ALL, upper and lower edges correspond to ∆g = +g
and ∆g = −g, respectively. The red curve is for GRSV-std.

From 2009, RHIC will start to operate polarized pp run with
√

s = 500 GeV. The goal at
500 GeV is the integrated luminosity of 800 pb−1 and the average beam polarization of 70 %.
The measurements of ALL at 500 GeV result in probing ∆g at lower Bjorken x than 200 GeV.
It is important to extend the coverage of Bjorken x because that is one of the concerns to
determine ∆g as described in Section 4.4. Another important research at

√
s = 500 GeV is to

separate the contributions from ū and d̄ quarks to the proton spin. This will be achieved via
measurement of AL in W boson production. Finally, 8000 W+s and 8000 W−s are expected
to be accumulated during the 500 GeV operation.
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Chapter 5

Conclusion
We have measured double helicity asymmetry ALL in π0 production in pp collision with√

s = 200 GeV. Kinematical coverage of the measurement was 0.5 to 9.0 GeV/c in pT and
−0.35 to 0.35 in η. The measurement of Aπ0

LL is considered as a promising method to probe
∆g, which is gluon polarization in the proton and large uncertainty was previously assigned
to. As well as Aπ0

LL, single helicity asymmetry Aπ0

L and double transverse spin asymmetry

Aπ0

TT were also measured in this thesis.
The polarized proton beams with energy of 100 GeV were provided and collided by RHIC

at BNL in the U.S. The measurements were performed with the PHENIX detector in 2005.
Integrated luminosity accumulated by PHENIX in the data-taking period was 3.8 pb−1, and
2.4 pb−1 was used in this thesis after data quality selection. Averaged beam polarization was
about 50 % for the selected data sample. Photons produced at the collision were detected
by EMCal located at central region and π0s were identified by selecting the invariant mass
which was reconstructed from photons. The π0 mass was also used for energy calibration
of EMCal. For the particle identification, various cuts were applied utilizing ToF between
EMCal and event vertex, shower profile and charged particle veto by use of tracking chambers
in front of EMCal. High-energy photon trigger implemented in EMCal was utilized for the
data taking to effectively collect photons in wide pT range. The result of ALL was consistent
with zero within the measurement uncertainty. The statistical uncertainty of measured ALL

was 0.0017 at 1.0 – 1.5 GeV/c and 0.0257 at 7.0 – 9.0 GeV/c in pT . The uncertainty from the
beam polarization, which appears as normalization uncertainty for ALL, was evaluated to be
∆ALL

ALL
= 9.5 %. The systematic uncertainty except for that from the beam polarization varied

from 0.0005 to 0.0089 depending on pT . Major source of the systematic uncertainty at small
pT was assumed to be due to fill-by-fill and crossing-by-crossing fluctuation of background,
while that at large pT was dominated by contamination from Aπ0

TT and ALL of background.
However, the statistical uncertainty is currently dominant compared with the systematic one
over all pT region measured.

Our result of Aπ0

LL is compared with theoretical calculations with various ∆g inputs and
clearly rejects the case of ∆g = +g and ∆g = −g. In addition, based on an approximate
relation between Aπ0

LL and ∆g, an interpretation of Aπ0

LL into ∆g with a simple model was
introduced in this thesis. In the interpretation, it turned out that our data would significantly
constrain the allowed region of ∆g. This is consistent with the result of a global analysis
which included our preliminary data. However, for more precise determination of ∆g, it is
important to employ various probes and extend a range of Bjorken x in measurements. In
2008, PHENIX will accumulate integrated luminosity of 71 pb−1 with beam polarizations of
65 % at

√
s = 200 GeV. From 2009, the operation with

√
s = 500 GeV is planned at RHIC.

In total, 800 pb−1 with 70 % polarization will be accumulated at 500 GeV. It is expected that
further knowledge on the structure of the proton spin will be obtained in the near future.
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Appendix A

A.1 Splitting functions for QCD evolution of PDF

The splitting function is expanded by an order of the coupling constant of the strong inter-
action, αs, like Equation (1.31). For this section, the leading order of the splitting function
is summarized.

P (0)
qq (z) =

4

3

(

2

[1 − z]+
− 1 − z

)

+ 2δ(1 − z), (A.1)

P (0)
qg (z) =

1

2

(

z2 + (1 − z)2
)

, (A.2)

P (0)
gq (z) =

4

3

1 + (1 − z)2

z
, (A.3)

P (0)
gg (z) = 6

(

1 − z

z
+

z

[1 − z]+
+ z(1 − z)

)

+

(

11

2
− nf

3

)

δ(1 − z). (A.4)

∆P (0)
qq (z) =

4

3

(

2

[1 − z]+
− 1 − z

)

+ 2δ(1 − z), (A.5)

∆P (0)
qg (z) =

1

2

(

z2 − (1 − z)2
)

, (A.6)

∆P (0)
qg (z) =

4

3

1 − (1 − z)2

z
, (A.7)

∆P (0)
gg (z) = 6

(

1

[1 − z]+
− 2z + 1

)

+

(

11

2
− nf

3

)

δ(1 − z). (A.8)

nf in these formulae is the number of the quark flavor. Usually, only u, d and s quarks are
considered. Therefore nf = 3 in the case. 1

[1−z]+
is introduced to regulate singularity of

Pij(z) at z = 1 and defined as

∫ 1

0

f(z)

[1 − z]+
dz ≡

∫ 1

0

f(z) − f(1)

1 − z
dz. (A.9)

A.2 Longitudinal double spin asymmetry by polarized DIS

To extract spin-dependent structure function g1, longitudinal double spin asymmetry A|| is
frequently measured by polarized DIS experiments. A|| is defined in Equation (1.45) and
relation of A|| and the structure functions becomes apparent by substituting Equation (1.13)
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and (1.14) into Equation (1.45). Finally, A|| is described by two terms on perspective of the
interaction between the proton and virtual photon emitted by the incident electron.

A|| = D(A1 + ηA2), (A.10)

where variables in this equation are

A1 ≡
σ 1

2
− σ 3

2

σ 1
2

+ σ 3
2

=
g1 − γ2g2

F1
, A2 ≡ 2σTL

σ 1
2

+ σ 3
2

= γ
g1 + g2

F1
, γ2 ≡ Q2

ν2
=

2Mx

ν
(A.11)

D ≡ E − ǫE′

E(1 + ǫR)
, η ≡ ǫγ(E − E′)

E − ǫE′ ,
1

ǫ
≡ 1 + 2

(

1 +
1

γ2

)

tan2 θ

2
(A.12)

R(x, Q2) ≡ σL

σT
=

F2(x, Q2)

2xF1(x, Q2)
(1 + γ2) − 1. (A.13)

σ 1
2

and σ 3
2

are cross sections of virtual photon absorption with transversely polarized1 by

polarized proton. σ 1
2

(σ 3
2
) is the case that the helicity of the photon and the spin of the

proton is antiparallel (parallel). σT (σL) is cross sections with unpolarized proton and virtual
photon polarized transversely (longitudinally). σTL is result from an interference between
transversely-polarized virtual photon and longitudinally-polarized one. γ is determined by
the kinematics and becomes 0 at the Bjorken limit. Hence, A1 is simply the ratio of g1 and F1

at the limit and A2 is expected to be smaller than A1. Moreover, η which is proportional to
γ is also suppressed. D is named depolarization factor and represents the polarization of the
virtual photon. R is ratio of σT and σL. R also relates F1 and F2. Because F1 = F2

2x at the
Bjorken limit as shown in Equation (1.21), R is equal to 0 in the simple parton model. If one
neglects the second term of Equation (A.10) and puts γ2 = 0, Equation (1.46) is obtained;

A|| ∼ D
g1

F1
∼ D

g1

F2
2x(1 + R). (A.14)

A.3 Yield from the collisions of the polarized beam

To begin with the calculation, a spin 1
2 particle is considered. The spin of the particle is

assumed to be on the x-z plane and oriented to have the angle α between the z-axis and the
spin direction as displayed in Figure A.1 as the particle a. The operators for the spin 1

2 for
the particle a are defined as

Ŝa
x =

1

2

{

|a+〉〈a−| + |a−〉〈a+|
}

, (A.15)

Ŝa
y =

i

2

{

−|a+〉〈a−| + |a−〉〈a+|
}

, (A.16)

Ŝa
z =

1

2

{

|a+〉〈a+| − |a−〉〈a−|
}

, (A.17)

where Ŝa
z , Ŝa

y and Ŝa
z are the operators for the x, y and z-component of the spin. |a+〉 and

|a−〉 are the eigenstate of Ŝa
z ; Ŝa

z |a+〉 = 1
2 |a+〉 and Ŝa

z |a−〉 = −1
2 |a−〉. Based on the definition,

the state of the particle a in Figure A.1 is described as follows;

|a〉 =

√

1 + cos α

2
|a+〉 +

√

1 − cos α

2
|a−〉. (A.18)
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Figure A.1: The definition of the spin direction in the collision of the polarized protons. The
z-axes for the particle a and b are set to the direction of movement of each particle.

Obviously, 〈a|Ŝa
x|a〉 = 1

2 sinα, 〈a|Ŝa
y |a〉 = 0 and 〈a|Ŝa

z |a〉 = 1
2 cos α.

In addition to the particle a, particle b is similarly defined as |b〉 to consider the double
spin asymmetry.

|b〉 =

√

1 + cosβ

2
|b+〉 +

√

1 − cos β

2
|b−〉. (A.19)

Naively, the cross section of a certain process is represented by the operator σ̂. The cross
section by the collision of the state |a〉 and |b〉 is therefore written as;

〈ab|σ̂|ab〉 =
1

4
[σ++ + σ+− + σ−+ + σ−−]

+
1

4
cos α [σ++ + σ+− − σ−+ − σ−−] +

1

4
cos β [σ++ − σ+− + σ−+ − σ−−]

+
1

4
sinα [σ↑+ + σ↑− − σ↓+ − σ↓−] +

1

4
sin β [σ+↑ − σ+↓ + σ−↑ − σ−↓]

+
1

4
cos α cos β [σ++ − σ+− − σ−+ + σ−−] +

1

4
sinα sinβ [σ↑↑ − σ↑↓ − σ↓↑ + σ↓↓]

+
1

4
cos α sinβ [σ+↑ − σ+↓ − σ−↑ + σ−↓] +

1

4
sinα cos β [σ↑+ − σ↑− − σ↓+ + σ↓−] , (A.20)

where σsasb
in the right side of the equation is equal to 〈asabsb

|σ̂|asabsb
〉. sa and sb take +,

−, ↑ or ↓. As described above, + and − indicate the eigenstates of Ŝz. Meanwhile, ↑ and ↓
indicate those of Ŝx and they can be converted using |+〉 and |−〉 into

| ↑〉 =
1√
2

{

|+〉 + |−〉
}

(A.21)

| ↓〉 =
1√
2

{

|+〉 − |−〉
}

. (A.22)

Therefore, Ŝx| ↑〉 = 1
2 | ↑〉 and Ŝx| ↓〉 = −1

2 | ↓〉 are satisfied.
For the further calculation, the z-axis for the spin of the particle a and b is set to the

RHIC beam axis at PHENIX and |+〉 (|−〉) correspond to the positive (negative) helicity
state. The x and y-axis for the spin direction are arbitrary. However, it is assumed that the

1Transverse polarization of the photon is eigen state of helicity = ±1 (circular polarization) and longitudinal
polarization of the (virtual) photon has helicity = 0.
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x-axes for the particle a and b are parallel. With this assumption, the cross section σsasb
for

the initial states which are the eigenstates of Ŝx or Ŝz is simply described as

σsasb
= σ0 [1 + (hsa + hsb

)AL + hsahsb
ALL + (tsa + tsb

)AN + tsatsb
ATT ] , (A.23)

where h+ = 1, h− = −1 and otherwise hs = 0, and t↑ = 1, t↓ = −1 and otherwise ts = 0. σ0

is the spin-averaged cross section. AL and AN are the longitudinal and transverse single-spin
asymmetry, and ALL and ATT are the longitudinal and transverse double-spin asymmetry.
σ0 and asymmetries depend on the kinematical region of measured particles. In the case of
the single spin asymmetry AL and AN , they are generated by the spin of either particle a
or b. In the measurement of π0 by use of the PHENIX central arms, the kinematical range
for AL (or AN ) in the view of the particle a is same as that for b because the detector is
symmetrically constructed on the both sides of the beam axis. Hence the contributions to
AL (or AN ) from the particle a and b are combined in Equation (A.23). See Section 2.3.1
about the overview of the PHENIX detector. Substituting Equation (A.23), Equation (A.20)
is rewritten as

〈ab|σ̂|ab〉 = σ0

[

1 + (cos α + cos β)AL + (sinα + sinβ)AN

+(cos α cos β)ALL + (sin α sinβ)ATT

]

≡ σ(α, β). (A.24)

To calculate the yield by the collisions of the polarized beams, the integrated luminosity
can be written as

L = cIaIb = c(Ia
+ + Ia

−)(Ib
+ + Ib

−), (A.25)

where Ia and Ib indicate the beam intensity for a and b, and c is the coefficient to relate I
and L. Ia

+ is defined as the fraction of the particles with an angle of α to determine its spin
direction. On the other hand, Ia

− is the fraction for an angle of α + π. This is same for b.
Therefore, I = I+ + I− is satisfied for the particle a and b each. The beam polarization for
the beam a (P a) and b (P b) is defined as

P =
I+ − I−
I+ + I−

, (A.26)

which is equivalent to I± = 1
2I(1±P ). The superscript a or b is abbreviated in this equation.

Finally, the yield for the process represented by Equation (A.23) and for the luminosity
defined by Equation (A.25) is obtained as follows;

N = cIa
+Ib

+σ(α, β) + cIa
+Ib

−σ(α, β + π)

+cIa
−Ib

+σ(α + π, β) + cIa
−Ib

−σ(α + π, β + π)

=
1

4
cIJ

[

σ(α, β) + σ(α, β + π) + σ(α + π, β) + σ(α + π, β + π)
]

+
1

4
cIJP a

[

σ(α, β) + σ(α, β + π) − σ(α + π, β) − σ(α + π, β + π)
]

+
1

4
cIJP b

[

σ(α, β) − σ(α, β + π) + σ(α + π, β) − σ(α + π, β + π)
]

+
1

4
cIJP aP b

[

σ(α, β) − σ(α, β + π) − σ(α + π, β) + σ(α + π, β + π)
]

= Lσ0

[

1 + (P a
L + P b

L)AL + (P a
T + P b

T )AN + P a
LP b

LALL + P a
T P b

T ATT

]

, (A.27)
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where PL and PT are the longitudinal and transverse component of the beam polarization,
and defined as;

P a
L = P a cos α, P a

T = P a sin α (A.28)

for the beam a. They are similarly defined for the beam b.

A.4 Other PHENIX detectors

A.4.1 Drift chambers (DC)

The major role of the drift chamber (DC) is to measure the trajectory of charged particles and
determine their momentum. To determine the momentum precisely, the position resolution
along the azimuthal direction is important since the field of the central magnet is oriented
parallel to the beam axis. DC has cylindrical shape with the beam axis as the central axis
and the distance of inner plane from the collision point is 2.0 m. The geometry of DC is 2 m
along the beam axis, 90 degrees in the azimuthal angle and 0.4 m deep in the radial direction.
The residual magnetic field in the coverage of DC is 0.06 T or less. The structure of east
and west DC is identical but mirror symmetric. An 130 µm Al-mylar is used as the window
(cylindrical plane) of DC, which limits the gas volume radially. Each DC is segmented into
20 pieces, each of which covers an azimuthal angle of 4.5 degrees and 2 m length along the
beam axis. Each segment has 4 anode planes and 4 cathode planes which are parallel to the
plane produced by the beam axis and radial direction, and therefore the drift space between
cathode and anode plane is 2.0 – 2.5 cm depending on the location of particle hit. One
anode plane includes 40 readout sense-wires. Twenty-four wires are oriented parallel to the
beam axis and 16 wires are tilted to the azimuthal direction by ±6 degrees from the anode
plane to determine 3 dimensional track of particle hits. To eliminate the left-right ambiguity
of the particle hit, 3 kinds of supporting wires are stretched. The single wire resolution of
165 µm is achieved and hence the spacial resolution in the beam axis direction is ∼2 mm.
The track-finding efficiency of better than 99 % is obtained.

A.4.2 Pad chambers (PC1, PC2 and PC3)

Three layers of pad chambers are constructed in the west central arm, which are named PC1,
PC2 and PC3 from inner layer, while two layers except for PC2 are installed in the east arm.
PC1 is located at 2.5 m from the collision point and just behind DC and in front of RICH,
and PC2 is at 4.2 m behind RICH, and PC3 is at 4.9 m in front of EMCal. The signals are
read out via the cathode plane which is segmented into pad shape and provide 3 dimensional
position. Therefore, unlike the case of 2 dimensional strip readout, the pad chambers can
provide 3 dimensional position without ambiguity when multiple clusters are found. The
important role of PC1 is to disentangle the multiple hits in DC, which cannot separate more
than two hits along the beam axis because the readout anode wires are oriented parallel to
the beam axis. PC2 and PC3 define the particle position at the entrance and the exit of
the detectors for the particle identification like RICH and EMCal. For these reasons, low
occupancy of individual channels and high detection efficiency are required.

Basic parameters of the pad chambers are listed in Table A.1. Each layer of the pad
chambers is divided into sectors. PC1 has 8 sectors each for west and east arms and they
are arranged along the azimuthal direction. In PC2 and PC3, the segmentation along the
azimuthal direction is rougher than PC1, while they are divided at the median plane of the
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Parameter PC1 PC2 PC3

Number of sectors 16 8 16
Sector size L × W × H (cm3) 198 × 50 × 6.0 151 × 157 × 7.2 177 × 185 × 9.0
Anode wire pitch (mm) 8.4 13.6 16.0
Cathode cell pitch (mm) 8.45 14.2 16.7
Radiation length (%) 1.2 2.38 2.37
Position resolution (mm) 1.7 2.7 3.2

Table A.1: The design parameters of the pad chambers. L, W and H is the length along the
beam axis, azimuthal direction and radial direction, respectively. The position resolutions
are the values in the direction along the anode wires. The resolution was measured using
cosmic rays for PC1 and PC2, while that for PC3 was evaluated by the simulation. The
requirement for the radiation length is severer for the most inner PC1 than PC2 and PC3.

arm (z=0) because of their large size. The orientation of the anode wires is parallel to the
beam axis in all chambers. It should be noted that minimal radiation thickness is desirable
in particular for PC1 to minimize the photon conversion into electron positron pair because
converted electrons generate background hits in RICH, which is the main detector for the
electron identification. Meanwhile, the requirement for PC2 and PC3 is less crucial.

Figure A.2: The schematic diagram of the pad chambers. (a) Each cell is divided into 3
pixels. (b) 9 pixels are electrically connected to form one pad. (c) Pixels are connected to
provide pads shifted each other. (d) The layers of the pads are virtually produced. The
signals from three overlapped pads identify the hit in the corresponding cell.

The geometry of the cathode segments is designed specially to reduce the number of
readout channels from a point of economical view, keeping the resolution, instead of simply
producing the chamber with cathode segmented into “cell” whose size is defined to satisfy
the position resolution. The principle of the pad geometry is displayed in Figure A.2. One
cell is divided into 3 “pixel”s and then 9 pixels from neighboring 3-by-3 cells are electrically
connected to make 1 “pad” layer, which is the unit to read out signals. The size of the center
pixel in the cell, which is nearest to the anode wire, is smaller than two adjacent pixels to
make induced charge on each pixel comparable. When a particle goes through a certain cell,
the signals from corresponding three pads should be read out. The relationship between the
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cell and three pads to respond is unique, and hence the cell on the particle path can be
determined explicitly. This geometrical design saves the number of channels by a factor 3
because 1 cell is divided into 3 pixels and meanwhile 9 pixels are connected to be 1 pad.
Moreover, the decision of the particle hit is less affected from electrical noise by requiring the
coincidence of three pads. On the other hand, a disadvantage is poorer ability to separate
double hits in near pads.

The performance of the pad chambers is evaluated during real data taking and test ex-
periment using cosmic ray. The efficiency of more than 99.5 % is achieved for all layers.
The obtained position resolution along the orientation of the anode wires (the beam axis) is
summarized in Table A.1, where the resolution is better than that expected from single cell
size because a large fraction of events have multiple hits in adjacent cells along the anode
wire. On the other hand, the position resolution perpendicular to the anode wire is most
likely the cell size divided by

√
12.

A.4.3 Ring image Cherenkov counter (RICH)

Ring image Cherenkov counter (RICH) is installed in both PHENIX central arms, and located
between PC1 and PC2 (PC3) in west (east) arm. They occupy the region of 2.6 – 4.1 m
from the beam axis and cover the acceptance of the central arm, 0.7 in pseudorapidity and
90 degrees in azimuthal angle. The role of RICH is the identification of electrons and it is
required to limit the false identification of hadrons to less than 10−4 below the Cherenkov
threshold for pions. The radiation thickness is a great concern of RICH because the major
background source in RICH is electron pairs from the photon conversion and the pad chambers
and EMCal behind RICH are also affected. Finally the radiation length of 2.5 % is achieved
with the following condition. Aluminized Kapton with thickness of 125 µm is selected for
the entrance and exit window. The spherical mirror in each RICH to reflect Cherenkov light
is divided into halves at the plane of z=0 and each mirror is focused on the RICH’s side
near the mirror. Therefore, PMT arrays to detect reflected Cherenkov light are located on
both side of RICH. The array on each side is comprised of 1280 PMTs; 16 along the beam
axis and 80 along the azimuthal angle. RICH employs 25 mm-diameter PMTs with UV glass
window and each of PMTs is attached to a 50 mm-diameter Winston cone. The coverage
of each PMT is approximately 0.02×0.02 in the area of pseudorapidity and azimuthal angle.
As the Cherenkov radiator, CO2 is filled at a pressure of 1.3 cm of water in addition to the
atmospheric pressure and provides the Cherenkov threshold of 4.65 GeV/c for pions. The
thickness of the radiator gas varies from 87 cm to 150 cm depending on the path of the
particle. A single charge particle with light velocity passing through 1.2m thick radiator
gas generates 12 photons on an average and produces the ring with a diameter of 11.8 cm.
The performance of RICH is evaluated with real data and the requirement in the electron
identification is satisfied.

A.4.4 Muon tracker (MuTr)

The muon trackers (MuTr) perform the tracking and the momentum measurement of charged
particles. Because the magnetic field is radial and therefore charged particles from the colli-
sion point are bent to azimuthal direction, the position resolution in the azimuthal direction
is important to measure the momentum precisely. MuTr in each arm comprises three sta-
tions of tracking chambers. The stations are placed perpendicular to the beam axis and
divided into octants each. In the farthest station, 2 layers of “gap”s are assembled, while
other two stations have 3 gaps each. The gap is the plane of the chamber, which consists of
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1 anode-wire plane between 2 cathode-strip planes and measures one-dimensional position of
the track by cathode-strip readout. The anode wires are oriented to the azimuthal direction
with an interval of 1 cm. While, depending on the gap, the orientations of the cathode strips
are perpendicular to the anode wires or tilted within ±11.25 degrees with respect to the per-
pendicular strips. By combining gaps in one station, two-dimensional position is determined
on the plane of the station. The width of the cathode strips is 5 mm and alternate strips
are read out to avoid cross talk. The position resolution is evaluated using cosmic ray to
be 130 µm for the azimuthal direction, which is translated into the momentum resolution of
∆p/p = 3 – 5 % for muons with a momentum of 2 – 10 GeV/c.

A.4.5 Muon identifier (MuID)

Muon identifiers (MuID) are constructed behind both north and south MuTr. The mechanical
structure of MuID is same in both arms and each consists of 5-layer chambers interleaved by
steel absorbers. The concept of MuID is to identify charged particles which survive a hadron
absorber of enough thickness to be muons. The coverage on the perpendicular plane to the
beam axis is 13 m wide and 10 m high. The distance from the collision point is 7 m at the
nearest chamber plane and the depth up to the farthest chamber is about 2 m. The role
of the hadron absorber is played by the steel backplate of the magnet with thickness of 20
(30) cm for the south (north) arm and 60 cm-thick steel for all layers in each MuID. The
absorbers correspond to 4.8 (5.4) interaction lengths for the south (north) arm.

In addition to the hadron rejection factor of ∼100 provided by the material between the
collision point and the muon tracker, roughly the factor of 30 is obtained by the absorber
of MuID. In terms of muons, the momentum of 2.5 (2.7) GeV/c is needed to penetrate the
south (north) muon arm. As the chambers, Iarocci-type tubes [107] are adopted. The spatial
acceptance for single electrical channel of the chamber corresponds to a width of 8.4 cm by
reading out multiple neighboring anode-wires into single channel. Since both horizontal and
vertical tubes are assembled in one layer, the layer has capability to determine the position
of the track in a segmentation of 8.4 cm × 8.4 cm. The detection efficiency of ∼97 % for
muons and the drift time of 60 nsec are obtained by the test experiment. The drift time is
enough faster than the bunch interval of the RHIC beam and MuID is used as one of the
triggers in PHENIX.

A.4.6 Other detectors

There are other detectors installed in the central arms. They include ToF [90] for the particle
identification and TEC [108] for the tracking of the charged particles.

A.5 The uncertainty of the relative luminosity

In this thesis, the number of BBCLL1 is used for the relative luminosity (R) and that of
ZDCLL1 is utilized for the reference of BBCLL1. The uncertainty of R is evaluated by
looking at the beam crossing dependence of the ratio of BBCLL1 and ZDCLL1 (C). The
relation between C and R is described in this section. The calculation is performed applying
the approximation based on several assumption. The number of BBCLL1 or ZDCLL1 is
described as follows.

ni ≡ n̄(1 + ǫi),
∑

i

ǫi = 0, (A.29)
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∆ni = n̄∆ǫi ≡ n̄∆ǭ(1 + δi),
∑

i

δi = 0, (A.30)

where subscript i denotes the crossing number, n̄ and ∆ǭ is the average of ni and ∆ǫi,
respectively. Therefore the sum of ǫi or δi is 0. The calculation is on the assumptions of
ǫi ≪ 1 and δi ≪ 1, and the terms of more than the second order of them are ignored. R is
defined as

R =

∑

i=like−helicity crossings nA
i

∑

i=unlike−helicity crossings nA
i

, (A.31)

where the summation is performed over either like- or unlike-helicity crossings. The super-
script A indicates the trigger name; A for BBCLL1 and B for ZDCLL1. The error of R is
calculated as below.
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. (A.32)

The summations for like- and unlike-helicity crossings are abbreviated as
∑

++ and
∑

+−,
respectively. Another summation without subscript means the sum over all crossings. N is
the number of crossings and the subscript denotes the beam helicity state as before; N++

for the like-helicity, N+− for the unlike-helicity and N for the total (N = N++ + N+−). At
the step of the third to forth formula, α = N++−N+−

N is introduced and α ≪ 1 is assumed.
Finally the first terms of ǫ, δ and α become 0.

Similarly, the ratio of BBCLL1 and ZDCLL1 is approximated and simplified. The
crossing-by-crossing ratio is described as ci and the average of ci is C.

ci =
nB

i

nA
i

, ∆ci =

(

nB
i
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√

√
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∆nB
i

nB
i

)2

(A.33)

C =

∑ ci

(∆ci)2
∑ 1

(∆ci)2
, ∆C =

1
√

∑ 1
(∆ci)2

(A.34)
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The error of C is calculated as follows.
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(A.35)

After the simplification, The term
∑

(1 + O(ǫi, δi)) appears and the second order always be-
comes 0 due to the definition in Equation (A.29) and (A.30). By comparing Equation (A.32)
and (A.35), the uncertainties of R and C are related as

∆R

R
∼ 2∆ǭA

√
N

≤ 2

√

(∆ǭA)2 + (∆ǭB)2

N
∼ 2∆C

C
(A.36)

A.6 The error of the parameters on the bunch fitting

The bunch fitting is to fit the data to the function of i;

fi = C[1 + ǫLLhBihY i], (A.37)

where hBi and hY i is the helicity of the blue and yellow beam for the i-th crossing. C and
ǫLL are the fit parameters. The relationship between the error of C and ǫLL is discussed in
this section.

Because hBihY i is +1 or −1, the bunch fitting can be divided into two constant fittings;
one is for like-helicity crossings and the other is for unlike-helicity crossings. When the
parameters of the constant fittings are described as r+ for the crossings with hBihY i = +1
and r− for the crossings with hBihY i = −1, the C and ǫLL are related to r+ and r− as
r± = C[1 ± ǫLL], in other words,

C =
r+ + r−

2
, ǫLL =

r+ − r−
r+ + r−

. (A.38)

Hence, the errors of both C and ǫLL can be also written by r± and their error. The error of
C is

∆C =

√

(∆r+)2 + (∆r−)2

2
. (A.39)

The error of ǫLL is

(∆ǫLL)2 =
4

(r+ + r−)4

[

r2
−(∆r+)2 + r2

+(∆r−)2
]
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ǫLL ∼ 0 is assumed at the last step.

A.7 Probability of the multiple collisions

To estimate the probability of the multiple collision, we suppose that the multiplicity of the
collisions follows the Poisson distribution,

P (r) =
e−µµr

r!
, (A.41)

where µ is the mean of the distribution. The probability of the multiple collision is written
as

P (r > 1) = 1 − P (0) − P (1) = 1 − (1 + µ)e−µ. (A.42)

The probability of the collisions obtained with the detector which is insensitive to the multiple
collision, such as BBC, is P (r > 0) = 1− e−µ. Hence P (r > 1) is rewritten using P (r > 0) as

P (r > 1) = 1 − (1 − log(1 − c)) (1 − c), (A.43)

where c = P (r > 0), which is 8.18 % in this thesis and P (r > 1) = 0.344 % is obtained.

A.8 Optimization of the charged-particle veto cut

The cut value of the charged-particle veto cut is optimized to minimize the error of ALL. As
described in Section 3.6.1, the error of ALL for pure π0s is calculated based on Equation (3.23).
Because the uncertainty of ALL for a certain mass window is roughly written as 1√

N
, where

N is the total yield in the window and the beam polarization is abbreviated, the error of π0

ALL for the yield after a certain PID (particle identification) cut is written as

∆Aπ0

LL(cut) =

[

1

p2N sig
cut

+
(1 − p)2

p2N
BG(side)
cut

]
1
2

. (A.44)

The error from the π0 purity is ignored in this equation. Instead of BG(under), BG(side)
is used following the actual analysis procedure to calculate Aπ0

LL. In addition, N sig
cut and

N
BG(side)
cut is rewritten as

N sig
cut =

1

p
Nπ0

cut =
ǫ

p
Nπ0

org, N
BG(side)
cut = αN

BG(under)
cut =

αǫ(1 − p)

p
Nπ0

org, (A.45)

where the subscription org indicates the yield before the PID cut, α is the ratio between

N
BG(side)
cut and N

BG(under)
cut , and ǫ is the efficiency of π0 by the PID cut. Using these relation,

Equation (A.44) is rewritten as

∆Aπ0

LL(cut) =

√

α + 1 − p

αpǫ

1
√

Nπ0

org

. (A.46)
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The coefficient which consists of α, p and ǫ is named “error factor”. As expected, high purity
and high efficiency are preferred to reduce the uncertainty of ALL. The parameters for the
charged-particle veto cut is determined to minimize the error factor.

The charged-particle veto cut is performed to remove only charged hadrons keeping the
electron-positron pairs from the conversion as described in Section 3.5.4. Therefore, the lower
and higher threshold for the cut must be determined. In this analysis, the lower threshold
is determined at first and then the higher threshold is optimized with the lower cut applied.
The parameters for the optimization is extracted depending on the cluster energy as displayed
in Figure 3.23. Figure A.3 displays the error factor for the clusters with a certain energy
as a function of the lower (left figure) and higher (right figure) threshold of the cut. The
optimized threshold is denoted by the blue point in the figures. The flat region in Figure A.3-
right for the higher threshold indicates the unavailable threshold because it is below the lower
threshold. Such analysis as displayed in these figures is performed for all energy region and
the cluster energy dependence is parameterized.
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Figure A.3: The error factor as a function of the threshold of the charged-particle veto cut.
The left is for the lower threshold and the right is for the higher threshold. The threshold
for the minimum error factor is displayed as the blue point.

A.9 Run dependence of the ToF offset

Figure A.4 displays the EMCal sector-by-sector ToF offset as a function of the run number.
The offset becomes shifted by ∼1 nsec at the latter period of the 2006 run.

A.10 Stability of the π0 peak position and width

The run dependence of the π0 peak position and width indicates the stability of EMCal.
Figure A.5 and A.6 displays the peak position and the width as a function of the run number.
The peak position is downside as the time goes. It indicates the shift of the EMCal energy
gain. On the other hand, the peak width is stable during the 2006 run.
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Figure A.4: The sector-by-sector ToF offset as a function of the run number.
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Figure A.5: The sector-by-sector position of the π0 peak as a function of the run number
before the energy calibration.

149



run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
E

3)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
W

3)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
E

2)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
W

2)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
E

1)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
W

1)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
E

0)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

run
170000 175000 180000

run
170000 175000 180000

 p
ea

k 
w

id
th

 (
W

0)
0 π

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Figure A.6: The sector-by-sector width of the π0 peak as a function of the run number before
the energy calibration.
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A.11 Comparison of the π0 peak between the data and FastMC

The absolute energy scale of EMCal is determined by use of FastMC described in Section 3.5.6.
The detail comparison between the data and FastMC is displayed in Figure A.7 and A.8. The
non-linearity in the incident energy and the measured energy due to the tower-by-tower energy
threshold is also evaluated by FastMC.

Figure A.7 displays the comparison without the correction of the energy non-linearity. The
lower peak position in the lower pT region is mainly because of this non-linearity since the
percentage of the energy loss is larger in the lower energy clusters. The difference in the peak
position between PbSc and PbGl is the result of the different clustering method. Because
the cluster energy is calculated using only core towers in the cluster in PbSc, the towers
with energy around the threshold are automatically removed in the energy measurement.
Therefore, the pT dependence of the peak position is more flat in PbSc than PbGl. See
Section 3.5.2 about the clustering. The other source in the modification of the π0 peak
position is the shape of the pT spectrum as described in Section 3.5.6. The difference between
the ERT and MB sample is from the different shale.

The up trend of the π0 peak width in the high pT region is from the position resolution of
EMCal. Two photons from the decay of π0 with the higher momentum produce two clusters
more closely on EMCal. Hence the resolution in the separation of two clusters becomes
dominant in the mass resolution.

By the tuning of FastMC in Figure A.7, the fraction of the energy loss due to the energy
non-linearity is obtained as a function of the cluster energy. The function and the parameters
are described in Section 3.5.6. Figure A.8 displays the comparison between the data and
FastMC after the correction of the energy non-linearity. FastMC reproduces the data well.
The π0 peak position becomes more flat than the case without the non-linearity correction.
However, the peak position is still higher than the universal value of 0.135 GeV/c2 due to
the other effect from the pT distribution.

A.12 Various crossing dependence

In this section, various crossing dependences are examined. They are on the rate of missing
event, prescale of MB, efficiency of the event vertex cut and number of ERT. The crossing
dependence over statistical fluctuation has possibility to affect the uncertainty of the asym-
metries of π0. However, such uncertainties are included in that evaluated by the bunch shuffle
described in Section 3.7.8.

Contribution of the crossing dependences to the systematic uncertainty of asymmetries,
ALL, AL and ATT , is evaluated as follows. For example, if efficiency of the event vertex cut
is not same between like-helicity and unlike-helicity crossings, it produces fake asymmetry in
calculation of Aπ0

LL, where π0s are counted with the vertex cut while GL1P scaler without the
vertex cut are used for the relative luminosity.2 Like this case, uncertainty of the crossing
dependence can be translated into that of the relative luminosity. In the following discussion,
the case of ALL is taken for instance. The similar result is applicable for the case of AL and
ATT .

We define the relationship between corrected luminosity (L), which should be used to
calculate ALL exactly, and uncorrected luminosity (L′), which is used in the actual calculation,

2If the efficiency of the event vertex cut is same in like- and unlike-helicity crossings, there is no problem
because only ratio of the luminosity is used in the calculation of ALL.
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Figure A.7: The comparison between the data and FastMC before non-linearity correction.
The top 4 plots is produced using the ERT data sample and the bottom 4 plots is for the
MB data sample. The plots on the lest side is for PbSc and the right side is for PbGl. The
first and the third rows show the π0 peak position, and the second and the fourth rows show
the π0 peak width.
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Figure A.8: The comparison between the data and FastMC after non-linearity correction.
The top 4 plots is produced using the ERT data sample and the bottom 4 plots is for the
MB data sample. The plots on the lest side is for PbSc and the right side is for PbGl. The
first and the third rows show the π0 peak position, and the second and the fourth rows show
the π0 peak width.
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as follows.

L++ ≡ β++L′
++ ≡ r(1 + a)L′

++, L+− ≡ β+−L′
+− ≡ r(1 − a)L′

+−, (A.47)

b =
β++ + β+−

2
, a =

β++ − β+−
β++ + β+−

, (A.48)

where ++ and +− at subscripts denote like- and unlike-helicity. β represents the difference
between L and L′, which is from the vertex cut efficiency for example. a and b are intro-
duced for convenience. Therefore, the relation of the corrected relative luminosity (R) and
uncorrected relative luminosity (R′) is written as

R =
L++

L+−
=

1 + a

1 − a

(

L′
++

L′
+−

)

=
1 + a

1 − a
R′, R′ ≡ L′

+

L′
−

,

(∆R)2 = R2

[

(

∆R′

R′

)2

+

(

2∆a

1 − a2

)2
]

∼ (∆R′)2 + (2∆a)2, (A.49)

where we applied an approximation of R ∼ 1, R′ ∼ 1 and a ∼ ∆a ≪ 1 to obtain the second
equation.

In terms of ALL, the difference of R and R′ introduces additional uncertainty.

Acorr
LL =

1

PBPY

N++ − N+−R

N++ + N+−R

=

(

Auncorr
LL − 1

PBPY

2N+−R′

N++ + N+−R′
a

1 − a

) (

1 +
2N+−R′

N++ + N+−R′
a

1 − a

)−1

∼ Auncorr
LL − 1

PBPY
a, (A.50)

∆Acorr
LL ∼ 1

2PBPY
∆R ∼

√

(

1

2PBPY
∆R′

)2

+

(

1

PBPY
∆a

)2

, (A.51)

where PB and PY is the beam polarizations. N++ and N+− indicate yield of π0 by the
collisions in like- and unlike-helicity crossings, respectively. Auncorr

LL is ALL calculated with

the uncorrected relative luminosity, R′ and is written as Auncorr = 1
PBPY

N++−N+−R′

N+++N+−R′ . To

obtain this results, we apply the approximation of N++ ∼ N+−, R′ ∼ 1 and a ∼ ∆a ≪ 1.
Therefore, it is found that size of the false asymmetry to the correct value, Acorr

LL , is 1
PBPY

a

and contribution of ∆a to ∆Acorr
LL is 1

PBPY
∆a. In this thesis, R′ is used in the calculation

of ALL as the relative luminosity. The uncertainty of the relative luminosity obtained in
Section 3.4, which is ∼ 2 × 10−4 for ALL and AL, and ∼ 1 × 10−3 for ATT , is for R′.
Therefore, the additional uncertainty in Equation (A.50) and (A.51) need to be considered
as the systematic uncertainty.

In this analysis, bunch fitting explained in Section 3.4 was applied to the crossing depen-
dence of the various variables like Figure A.10. The fitting was performed fill by fill because
such crossing dependences can be correlated between runs in the same fill. The effect of the
systematic uncertainty is estimated following Equation (A.50) and (A.51) using a obtained
by the fitting. In addition, chi-square of the fit is also useful to assess the existence of the
systematic uncertainty.
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A.12.1 GL1Pres and GL1Psum

GL1P scaler counts are used for the relative luminosity in the Aπ0

LL calculation. As introduced
in Section 2.3.5, the scaler counts are recorded event by event with two ways, which are named
GL1Psum and GL1Pres. In the former way, the counts accumulated from the start of DAQ
are recorded, while they are reset at each reading in the latter way. Ideally, these two types
of scalers indicate identical counts by accumulating events. However, because a part of the
events are discarded in the analysis code, they do not agree each other.

In this section, the crossing dependence of the ratio of GL1Pres/GL1Psum for BBCLL1
is examined. Figure A.9 displays recorded event number in a run. The dent period is due
to the loss of the event during processing the data through the analysis code. Figure A.10
displays the crossing dependence of the ratio of GL1Pres/GL1Psum for the run and no
crossing dependence is found by fitting the ratio to a constant and looking at the chi-square.
In the actual analysis, bunch fitting explained in Section 3.4 is performed instead of the
fitting to a constant. Figure A.11 and A.12 display reduced chi-square of the bunch fitting
and the ratio of GL1Pres/GL1Psum as a function of fill number. There are fills with reduced
chi-square far from unity. Meanwhile, the reduced chi-square in run-by-run analysis is nearer
to unity as displayed in Figure A.13. Because the event loss should not correlate over runs, it
is considered that the reason of the large chi-square is due to time dependence of the shape
of the beam crossings. On the other hand, the chi-square is small for the fill or run with
almost no lost events, where it is difficult to calculate the statistical error exactly.
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Figure A.9: Number of recorded events as
a function of event number. One bin of the
histogram consists of 1000 events.

 / ndf 2χ  56.02 / 68
p0        0.0001± 0.9481 

Crossing Number
0 20 40 60 80 100 120

G
L

1P
re

s 
/ G

L
1P

su
m

 (
B

B
C

L
L

1)

0.94

0.942

0.944

0.946

0.948

0.95

0.952

0.954

0.956

0.958

 / ndf 2χ  56.02 / 68
p0        0.0001± 0.9481 

Figure A.10: Crossing dependence of
GL1Pres/GL1Psum for a run. No crossing
dependence is found in the run.

In the calculation of Aπ0

LL in this thesis, GL1Pres scaler count of BBCLL1 is used for
the relative luminosity. Since the number of π0 is counted using same events as those for
GL1Pres, there should be no systematic uncertainty in Aπ0

LL from the discrepancy of GL1Pres

and GL1Psum. However, considering a possible contribution to the Aπ0

LL uncertainty, the
systematic error is evaluated following Equation (A.49) and Equation (A.50). Figure A.14
displays double helicity asymmetry without normalization by the beam polarization (ǫLL)
for the ratio of GL1Pres/GL1Psum. The asymmetry corresponds to a in Equation (A.48).
Effect of large chi-square is corrected by enlarging the error bars of Figure A.10 to make the
reduced chi-square unity. Average a is obtained by fitting Figure A.14 to a constant to be
(0.6 ± 1.3) × 10−7 with reasonable chi-square. The asymmetry is consistent with 0 within
error and it is negligible compared with uncertainty of the relative luminosity.
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Figure A.11: Reduced chi-square of bunch
fitting of GL1Pres/GL1Psum as a function
of fill number.
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Figure A.12: Ratio of GL1Pres/GL1Psum as
a function of fill number.
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Figure A.13: Reduced chi-square of bunch
fitting of GL1Pres/GL1Psum as a function
of run number.
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Figure A.14: Double helicity asymmetry of
GL1Pres/GL1Psum without normalization
of the beam polarization as a function of fill
number. Correction due to large chi-square
in the bunch fitting is applied.
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A.12.2 Recorded MB and GL1P scaler count

In this section, the number of recorded MB (BBCLL1) events, which is prescaled from live
MB events, and GL1P scaler count of MB are compared. See Section 2.3.5 about type of
trigger and Section 2.3.5 about the scaler. For the scaler counts, GL1Pres is used for the
comparison. The analysis is performed fill by fill, and therefore recorded BBCLL1 events are
normalized by run-by-run prescale factor and summed up over runs in the same fill. Ratio
of GL1P scaler to recorded MB (GL1P/MBrec) is calculated crossing by crossing and bunch
fitting is applied as in the previous section.

Figure A.15 and A.16 display the reduced chi-square and the ratio of GL1P/MBrec ob-
tained by the bunch fitting. The ratio should be unity and it is true in most of the fills,
while there are some fills with small ratio, where the chi-square is large up to ∼ 9. In these
earlier fills, statistics is also large since prescale factor of MB trigger is small during the pe-
riod. Figure A.17 is the scatter plot of the reduced chi-square and the error of GL1P/MBrec.
Moreover, when the analysis is performed run by run, the reduced chi-square is ∼4 at most,
in which it is ∼9 in fill-by-fill analysis, and this indicates that the crossing dependence of
GL1P/MBrec is correlated over runs.
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Figure A.15: Reduced chi-square of the
bunch fitting of GL1P/MBrec as a function
of fill number.
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Figure A.16: Ratio of GL1P/MBrec as a
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Figure A.17: Scatter plot of the reduced
chi-square and the error of the ratio of
GL1P/MBrec by the bunch fitting.
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In addition, it is observed that the crossing dependence is correlated over early bad fills.
Figure A.18 displays GL1P/MBrec as a function of crossing number. In Figure A.18, 5 plots
for the fills in which the reduced chi-square of bunch fitting is larger than 3 are superposed
after normalization. These fills have similar crossing dependence; the ratio is larger than other
crossings in the crossings after empty crossings. This tendency is seen in only earlier fills and
the crossing dependence is well randomized in other fills. Figure A.19 displays GL1P/MBrec

as a function of crossing number after summing up counts in all fills. The fit of Figure A.19
to a constant provides reduced chi-square of 180/99.
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Figure A.19: Crossing dependence of
GL1P/MBrec after summing up all fills.
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Figure A.20: Double helicity asymmetry of
GL1P/MBrec without normalization by the
beam polarization as a function of fill num-
ber. Correction due to large chi-square in
the bunch fitting is applied.

Though reason of the crossing dependence in early fills is unknown, the contribution from
the systematic uncertainty to Aπ0

LL is evaluated using Equation (A.49) and Equation (A.50).
Figure A.20 displays double helicity asymmetry without normalization by the beam polariza-
tion (ǫLL) for GL1P/MBrec. The correction due to large chi-square of bunch fitting is applied
for the asymmetry. The asymmetry a in The asymmetry a in Equation (A.48) is obtained
by fitting Figure A.20 to a constant to be (−5.4 ± 3.4) × 10−5, whose effect is smaller than
uncertainty of the relative luminosity.

A.12.3 Event vertex cut

In this section, crossing dependence of efficiency of the event vertex cut in offline analysis is
studied. As described in Section 2.3.5, we selected event vertex within a range of −30 cm to
+30 cm from the collision point. The vertex cut efficiency depends on the vertex distribution
of corresponding crossing, and therefore crossing to crossing variation of the efficiency is
possible depending on the operation of RHIC. The ratio of the number of MB events with
vertex cut to that without vertex cut (MBcut/MBno cut) is calculated for each crossings and
bunch fitting is performed fill by fill. Since the vertex distribution is correlated over runs in
same fill, the analysis must be carried out fill by fill. MB events are used for the analysis
instead of ERT events because the vertex cut efficiency was difference between even and odd
crossing as described later.

Figure A.21 and A.22 display the reduced chi-square and the value of MBcut/MBno cut

by the bunch fitting as a function of fill number. Cliff around fill 6970 in Figure A.22 is
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because the vertex cut parameters of BBCLL1 was changed online. Though the reduced
chi-square is better in the latter period, it is just due to smaller statistics of MB events.
Figure A.23 displays the relation of the reduced chi-square obtained by the bunch fitting
and the statistical error of MBcut/MBno cut. It is seen that the reduced chi-square becomes
worse in small statistical error in Figure A.23. After the correction to make the reduced chi-
square unity, the double helicity asymmetry without normalization by the beam polarization
(ǫLL), which is a in Equation (A.48), is displayed in Figure A.24 as a function of fill number.
Average of a is (−3.0±2.3)×10−5 and it is enough smaller compared with the uncertainty of
the relative luminosity, and therefore the systematic error from the vertex cut can be ignored
in extracting Aπ0

LL.
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Figure A.21: Reduced chi-square of bunch
fitting of the vertex cut efficiency as a func-
tion of fill number.
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Figure A.22: MBcut/MBno cut as a function
of fill number.
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Figure A.23: Scatter plot of the reduced chi-
square and the statistical error of the vertex
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Figure A.24: Double helicity asymmetry of
the vertex cut efficiency without normaliza-
tion by the beam polarization after correc-
tion based on the chi-square.

As described above, the efficiency of the vertex cut for ERT events depends on whether
the crossing is even or odd. Figure A.25 displays the ratio of events with the vertex cut to
events without the cut as a function of the crossing number for a certain run as a sample of
bad run. Red and blue points in Figure A.25 are corresponding to the ERT and MB events,
respectively. Clearly two categories can be seen for the ERT events. It is also notable that
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the vertex cut efficiency is lower in the MB events than the ERT events in any fills. Crossing
distribution without the vertex cut for the run is displayed in Figure A.26. Red and blue
histograms are for the ERT events and the MB events, respectively. Rejection power of ERT
is obviously different between even and odd crossings because ERT has two alternative circuit
for even and odd crossings as explained in Section 2.3.4.
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Figure A.25: The crossing dependence of the
vertex cut efficiency for a certain run. Red
points are for the ERT events and blue points
are for the MB events.
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Figure A.26: Crossing distribution for the
run corresponding to Figure A.25. Red his-
togram is for the ERT events and blue one is
for the MB events.

The phenomenon of the different vertex-cut efficiency for ERT is understood by effective
acceptance of EMCal due to the central magnet. ERT requires high energy photon and it
can roughly come from the event vertex within ±40 cm because photons from the outside are
disturbed by the central magnet. In this reason, data of the ERT events have smaller tail in
the event vertex distribution than that of MB events. Hence, the efficiency of the vertex cut
for the ERT events is higher than MB events relatively. The difference between even and odd
crossings in the ERT events can be also explained in the same way. Because of alternative
circuits of ERT, the energy threshold is slightly different between even and odd crossings.
In the crossings with lower threshold, performance of ERT is less effective than that in the
other crossings and becomes closer to MB. That’s why the efficiency of the vertex cut should
be lower in the crossings for the ERT events with lower threshold than the other. In fact, as
shown in Figure A.25 and A.26, the vertex cut efficiency is lower in the crossings with higher
event rate, which is due to the lower threshold, and the efficiency is higher with lower event
rate.

The contribution of the systematic uncertainty by the vertex cut for the ERT events is
assumed to be same as the case of the MB events because variation of the vertex distribution
is over the statistical fluctuation and the systematic error is dominant. a in Equation (A.48)
for even and odd crossings for the ERT events are (−0.9±3.1)×10−5 and (−2.8±3.8)×10−5,
and the average is (−1.7 ± 2.4) × 10−5. Therefore, the systematic uncertainty by the vertex
cut does not appear in the Aπ0

LL results.

A.12.4 ERT and GL1P (ALL of ERT)

In this section, crossing dependence of the ratio of the ERT events and BBCLL1 GL1P-scaler
counts (ERT/GL1P) is studied. It is same as calculating double helicity asymmetry of ERT.
As in the previous sections, ERT/GL1P is calculated crossing by crossing and bunch fitting
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is performed for each fill. The analysis is carried out in even and odd crossings separately
because of the specification of the ERT circuit described in Section 2.3.4.

Figure A.27 and A.28 display the reduced chi-square and ERT/GL1P obtained by bunch
fitting as a function of fill number. Red and blue points correspond to the data of even and
odd crossings, respectively, in both plots. Some reasons of the large chi-square are thought; for
example, the vertex cut efficiency as described in Section A.12.3, the difference of scaler events
and recorded events by DAQ as shown in section A.12.2, error of the scaler itself (it is same
as error of the relative luminosity), noise of EMCal and so on. We don’t discuss the reason
in detail and just show the result of the asymmetry after chi-square correction. Figure A.29
and A.30 display double helicity asymmetry without normalization of the beam polarization
for even and odd crossings, respectively. The crossing-by-crossing uncertainty of ERT/GL1P
is enlarged to make the reduced chi-square of bunch fitting unity in the calculation of the
asymmetry. The fit to a constant is applied for each plot and average over all fills is obtained
to be (−0.7± 1.9)× 10−4 for the even crossings and (2.7± 3.0)× 10−4 for the odd crossings.
Average of the even and odd crossings is (0.3 ± 1.6) × 10−4.
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Figure A.27: Reduced chi-square of bunch
fitting of ERT/GL1P as a function of fill
number. Red points are for even crossings
and blue for odd crossings.
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Figure A.28: ERT/GL1P as a function of fill
number. Red points are for even crossings
and blue for odd crossings.

Though the asymmetry is consistent with 0 within the error, size of the error is large
compared to the uncertainty of the relative luminosity based on Equation (A.49). In terms
of the uncertainty of Aπ0

LL, possible contribution from the crossing dependence of ERT/GL1P
is 0.064 based on Equation (A.51) assuming beam polarization of 50% and it is comparable
to the statistical uncertainty of Aπ0

LL when events in all pT bins are summed up. However,
this estimation does not appear necessarily and, in fact, such large systematic uncertainty
is not seen in the bunch shuffle for the counts of π0. This is explained by the reason that
π0 candidates are collected by applying various cuts for particle identification and selecting
reasonable mass window unlike just collecting triggered events.

A.13 Residual asymmetry in the bunch shuffle

When a finite asymmetry is observed, it affects an accuracy of the bunch shuffle described in
Section 3.7.8. In this section, the estimation of the residual asymmetry in the bunch shuffle
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Figure A.29: Double helicity asymmetry
without normalization of the beam polariza-
tion for even crossings. Correction based on
the chi-square is applied.
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Figure A.30: Double helicity asymmetry
without normalization of the beam polariza-
tion for odd crossings. Correction based on
the chi-square is applied.

is described. The asymmetry after the bunch shuffle (Ashuffle) is calculated as follows.

Ashuffle =

N+
+ +N+

−

L+
++L+

−
− N−

+ +N−
−

L−
++L−

−

N+
+ +N+

−

L+
++L+

−
+

N−
+ +N−

−

L−
++L−

−

=
A

(

L+
+−L+

−

L+
++L+

−
− L−

+−L−
−

L−
++L−

−

)

2 + A

(

L+
+−L+

−

L+
++L+

−
+

L−
+−L−

−

L−
++L−

−

)

∼ 1

2
A

(

L+
+ − L+

−
L+

+ + L+
−
− L−

+ − L−
−

L−
+ + L−

−

)

= A
L+

+L−
− − L−

+L+
−

(L+
+ + L+

−)(L−
+ + L−

−)

≡ ABlum, (A.52)

where N and L indicates the yield and the integrated luminosity. + and − at the subscript
denote the actual helicity combination, where + (−) corresponds to the (un)like-sign helicities
in the case of ALL. Similarly, the superscript denotes the helicity combination after the shuffle.
From the first to the second equation, a relation of Nh

± = CLh
±(1±A) is utilized for h = +or−

in the same way as Equation (1.54). This means that the statistical fluctuation of the yield
N is ignored in this equation. The polarization is abbreviated in this section. At the second
to the third step, the approximation of A ≪ 1 is applied Blum is defined as the luminosity
part of the 4th equation. Therefore, the residual asymmetry remains as far as the helicity
dependent luminosities are unbalanced. In the analysis, Blum can be calculated in the bunch
shuffle and the fluctuation of Blum is summarized as a width of the Gaussian distribution in
Table A.2.

Blum is estimated numerically as follows. With an attention that L+
+ + L−

+ and L+
− + L−

−
are conserved respectively, they are approximated as

L+
+ + L−

+ ∼ L+
− + L−

− ∼ 1

2
L, (A.53)
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Longitudinal Pol. Transverse Pol.
MB ERT(even) ERT(odd) MB ERT(even) ERT(odd)

Blum 0.023 0.016 0.027 0.068 0.082 0.163
n 6489 5014 1642 244 199 45

Table A.2: Blum and the number of all crossings (n).

where L is the total integrated luminosity; L ≡ L+
+ + L−

+ + L+
− + L−

−. Blum is rewritten using
this relation as

Blum ∼
1
2L(L+

+ − L+
−)

L(L+
+ + L+

−) − (L+
+ + L+

−)2
. (A.54)

Obviously, since the mean values of L+
+ and L+

− are identical (= 1
4L) in the approximation of

Equation (A.53), the mean value of Blum is 0. To calculate the fluctuation of Blum (∆Blum),
Blum is differentiated with respect to L+

+, for example.

∂Blum

∂L+
+

=
1
2L[L(L+

+ + L+
−) − (L+

+ + L+
−)2] − 1

2L(L+
+ − L+

−)[L − 2(L+
+ + L+

−)]

[L(L+
+ + L+

−) − (L+
+ + L+

−)2]2

=
2

L
at L+

+ = L+
− =

1

4
L. (A.55)

The differential with respect to L+
− lead to the same result. Finally ∆Blum becomes as follows;

∆Blum =
2

L

√

(∆L+
+)2 + (∆L+

−)2. (A.56)

Then, the fluctuation of L+
+ and L+

− (∆L+
+ and ∆L+

−) is estimated. The mean and fluctuation
of L+

+ can be described as;

〈L+
+〉 = 〈n+

+〉〈l〉, (A.57)

(∆L+
+)2 = 〈l〉2(∆n+

+)2 + 〈n+
+〉2(∆〈l〉)2

= 〈l〉2(∆n+
+)2 + 〈n+

+〉(∆l)2 (A.58)

where l is the integrated luminosity for each beam crossing and ∆l corresponds to the crossing-
to-crossing fluctuation of l. n+

+ is the number of the crossings where both initial and shuffled
helicity combination is like-sign. The mean value and the fluctuation of n+

+, 〈n+
+〉 and ∆n+

+,
follows the binomial distribution and are written as

〈n+
+〉 =

1

2
(n+

+ + n−
+) ∼ 1

4
n (A.59)

(∆n+
+)2 = (n+

+ + n−
+)

1

2
(1 − 1

2
) ∼ 1

8
n, (A.60)

where n is defined as n = n+
+ + n−

+ + n+
− + n−

− and the approximation of n+
+ + n−

+ ∼ 1
2n is

used. frac12 in this equation is the probability of whether the helicity combination is kept
or not in the shuffle. Therefore, ∆L+

+ becomes

∆L+
+ =

L2

8n

[

1 + 2

(

∆l

〈l〉

)2
]

, (A.61)
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where the relation of the total luminosity L is equal to n〈l〉. The same result is obtained for
∆L+

−. Finally, ∆Blum can be described as

∆Blum ∼

√

√

√

√

1

n

[

1 + 2

(

∆l

〈l〉

)2

.

]

(A.62)

Therefore, the residual asymmetry in the bunch shuffle becomes smaller at the larger number
of the all crossings n. In addition, the crossing-to-crossing fluctuation of the integrated
luminosity makes it large. n used in the analysis is listed in Table A.2.

A.14 Fill-merging ALL

In our standard analysis, asymmetries are calculated fill by fill (fill-by-fill asymmetry) as
described in Section 3.6.1. In this section, the asymmetries calculated with fills merged (fill-
merging asymmetry) is discussed. This method is useful when the statistics in one fill is too
small to evaluated the yield as the Poisson distribution such as in the higher pT bins. The
method described in this section is for ALL. However, it is applicable to other asymmetries like
AL. When fills are merged, what should be considered is the fill dependence in the calculation.
Particularly in this analysis, the background fraction under the π0 peak fluctuates fill by fill
due to a little noisy towers of EMCal, which are not masked in the analysis and slightly
unstable during the data taking. This causes that the ratio of the background yields and the
luminosity depends on the fill. This effect is evaluated in this section.

Let us start from the definition of variables used in this section and the basic relationship
between them. N i

+ (N i
−) is defined as the yield in a certain mass window, such as the signal

window and the background window, for the collisions with like-sign (unlike-sign) helicities.
See Section 3.6.1 about the mass window for the asymmetry calculation. i at the superscript
represents the fill number. Similarly, the integrated luminosity in i-th fill is defined as Li

+

and Li
−. The relationship between N and L can be described as

N i
± = Li

±ǫi(1 ± Ai), (A.63)

where ǫi indicates fill dependence of N/L and we assume that ǫi is independent of the beam
helicity state. Ideally, ǫi should be constant over all fills in the 2005 run and should be the
product of the cross section, the detector acceptance, the trigger efficiency and so on. Ai

denotes ALL for N and may depend on the fill number. The beam polarization is abbreviated
in this section. The fluctuation of the polarization can be finally ignored in this calculation as
pointed out below. In this analysis, N is the number of the cluster pairs in the selected mass
window. For example, when the signal window is selected, Ai is the combined asymmetry for
π0 (Aπ0

) and the background under the π0 peak (ABG).

Ai = piAπ0
+ (1 − pi)ABG, (A.64)

where pi is the purity of π0 for i-th fill. See Section 3.6.1 about this relationship. pi can
be expressed by the average purity (p0) and the relative deviation from the average (αi);
pi = p0(1 + αi). Therefore, Ai is rewritten as

Ai = p0Aπ0
+ (1 − p0)ABG + (Aπ0 − ABG)p0αi

≡ A0(1 + βi), (A.65)
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where

A0 ≡ p0Aπ0
+ (1 − p0)ABG and βi ≡ Aπ0 − ABG

A0
αi (A.66)

From Figure3.32, the fluctuation of pi can be evaluated and p0αi is estimated to be a few %.
The second term is also expected to be the order of a few % and it is the second order in this
calculation as shown below. In any case that the fluctuation of Ai is small, it is negligible.
In this reason, the fill dependence of the beam polarization is also ignored in this calculation.
The validity of this approximation can be evaluated by the bunch shuffle and the result is
shown later.

Using Equation (A.63) and (A.65), ALL is calculated after summing up N i and Li over
all fills. Merged variables Nmerge and Lmerge are defined as

Nmerge
± =

∑

i

N i
± =

∑

i

Li
±ǫi(1 ± Ai), (A.67)

Lmerge
± =

∑

i

Li
±. (A.68)

Then, fill-merging ALL (Amerge) is calculated as follows.

Amerge =

(

Nmerge
+

Lmerge
+

)

−
(

Nmerge
−

Lmerge
−

)

(

Nmerge
+

Lmerge
+

)

+

(

Nmerge
−

Lmerge
−

) (A.69)

=
A0 + ∆ + A0

(

ǫβ++ǫβ−
ǫ++ǫ−

)

1 + A0∆ + A0
(

ǫβ+−ǫβ−
ǫ++ǫ−

)

∼ A0 + ∆, (A.70)

where

ǫ± =

∑

i L
i
±ǫi

∑

i L
i
±

, ǫβ± =

∑

i L
i
±ǫiβi

∑

i L
i
±

, ∆ =
ǫ+ − ǫ−
ǫ+ + ǫ−

. (A.71)

Because ∆ = 0 with Li
+ = Li

− or constant ǫi over all fills, ∆ ≪ 1 is assumed. Moreover,
ǫβ± ≪ ǫ± is expected. This assumption is applied at the last step in Equation (A.70) and
the only leading order is left. As described above, the term including βi disappears in this
approximation.

When ALL is calculated fill by fill and then averaged over all fills, the result becomes A0.
The discrepancy between fill-merging ALL and fill-by-fill ALL is ∆, which originates in the
fill dependence of ǫi ∼ N i/Li. In other words, Amerge fluctuates from the real asymmetry A0

by ∆ (when the fluctuation of ǫi is much small, the term with βi becomes significant). Since
ǫi can be written by N i and Li using Equation (A.63) as follows,

ǫi =
1

2

(

N i
+

Li
+

+
N i

−
Li
−

)

, (A.72)

the fluctuation of Amerge from A0 (∆) can be calculated using N i and Li, which is obtained
by the data.

The uncertainty of Amerge comes from the statistical error of Nmerge and the systematic
error of ∆ in this framework. The validity of this model is evaluated by the bunch shuffle.
See Section 3.7.8 about the bunch shuffle. The distribution of Amerge by the bunch shuffle
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is compared with the expectation of Equation (A.70). Figure A.31 displays the Amerge

distribution for the signal window and 2.5 – 3.0 GeV/c in pT using the ERT data sample. This
distribution is normalized by the average beam polarization weighted by fill-by-fill integrated
luminosity. The red Gaussian has a width of the statistical error of Amerge. The blue one is
obtained by fitting the Amerge distribution. For the green one, the statistical error and the
fluctuation of ∆ by the bunch shuffle is quadratically summed and it is used as a width of
the Gaussian curve. The narrower width of the red curve than the blue one indicates the
existence of some systematic fluctuation over the statistics and the good agreement between
the blue and green Gaussian proves that the systematic error is well explained by the fill-by-
fill fluctuation of ǫi. In the bunch shuffle, the fluctuation of ∆ itself is also obtained to be
smaller than a few %, therefore, the assumption for the approximation at Equation (A.70) is
confirmed.
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Figure A.31: The Amerge distribution by the bunch shuffle for the signal window and 2.5 –
3.0 GeV/c in pT using the ERT data sample. Red Gaussian has a width of the statistical error
of Amerge. Blue Gaussian is obtained by fitting the distribution. Green Gaussian has a width
of the quadratic sum of the statistical error and the fluctuation of ∆ defined Equation (A.70).

The ratio of the width between the red Gaussian and the blue Gaussian (the blue width
divided by the red one) is displayed as blue points in Figure 3.46. In the low pT region, the
width of the Amerge distribution is much wider than the statistical error and it indicates that
the fluctuation of the background level is larger than the statistical error. On the other hand,
the width of the Amerge distribution is well represented by the statistical error in high pT

region, where the statistical uncertainty is larger than the systematic fluctuation. Similarly
the ratio of the width between the green and blue Gaussian (the blue divided by the green) is
displayed in Figure 3.46 as black points, which is almost 1 over all pT range measured. This
means that the width of the Amerge distribution is well represented by the statistical error
and the systematic error from the fill-by-fill fluctuation of N i/Li. The results of the bunch
shuffle prove that the uncertainty of Amerge is understandable by the framework described in
this section.

In Figure 3.46, the results for ALL calculated fill by fill is also displayed as red points. See
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Section 3.7.8 about the bunch shuffle for the fill-by-fill calculated ALL. These points represents
the ratio of the width of the ALL distribution by the bunch shuffle to the statistical error
of ALL. The points with the rate more than 1 in the high pT region is caused by the too
small statistics. This statement is confirmed by the bunch shuffle for the fill-merging ALL,
where the statistics is enough even in the high pT bins by merging all of the statistics in the
2005 run. Moreover, while black points in Figure 3.46 is around 1 in any measured pT bins
and any data set, the red points for the MB sample have the values more than 1 in the low
pT region. This implies that the systematic error for the MB data evaluated by the bunch
shuffle with fill-by-fill calculated ALL originates in the fluctuation of ǫi in Equation (A.63).

At the last of this section, ALL for the signal and background window are compared
between ALL calculated fill by fill and fill-merging ALL. Figure A.31 displays ALL as a
function of pT . The black and blue points are the results of ALL with calculated fill by
fill and ALL calculated merging fill, respectively. The error bar for these points denotes
the statistical error, while the error bar colored with red for fill-merging ALL denotes the
quadratic sum of the statistical error and the systematic error from ∆ in Equation (A.70).
The results from these two methods are consistent with each other in all pT range measured
considering the uncertainty from the fluctuation of the background level ∆.

A.15 Combining AL for the blue and yellow beam polarization

Because both beams are polarized at RHIC, AL can be extracted using either beam polar-
ization and it is necessary to combine their results. The combined AL can be calculated as
usual as follows.

AL =
wBAL,B + wY AL,Y

wB + wY
, wB(Y ) =

1

(∆Auncorr
L,B(Y ))

2
(A.73)

AL,B and AL,Y is AL extracted using blue and yellow beam polarization, respectively. ∆Auncorr
L,B

or ∆Auncorr
L,B indicates the uncertainty of AL which is uncorrelated between AL,B and AL,Y .

Though, in principle, ∆Auncorr should includes both statistical and systematic uncertainties,
systematic uncertainty is ignored in this thesis. The reason is because (1) currently the sta-
tistical uncertainty is dominant and the effect from the systematic one is small, and (2) the
weight by the statistical and systematic uncertainty must be equal, but it is quite difficult to
estimate systematic error as root-mean-square like statistical error.

A.15.1 Uncertainty from polarization

To consider the uncertainty of AL from the beam polarization, Equation (A.73) is rewritten
as

AL = rB
ǫB

PB
+ rY

ǫY

PY
, where rB(Y ) =

wB(Y )

wB + wY
and AL,B(Y ) =

ǫB(Y )

PB(Y )
. (A.74)

PB and PY are the polarization of the blue and yellow beam, respectively. ǫ indicates raw
asymmetry and does not include P . The uncertainty from the beam polarization is calculated
as follows.

∆AL|pol =

[

r2
BA2

L,B

(

∆PB

PB

)2

+ r2
Y A2

L,Y

(

∆PY

PY

)2

+ 2rBrY AL,BAL,Y
(∆P corr)2

PBPY

]
1
2

(A.75)
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Figure A.32: ALL as a function of pT . The plots on the left side is for the signal window
and the right is for the background window. The top, middle and bottom plots are obtained
using the ERT even crossings, the ERT odd crossings and the MB sample, respectively. Black
points are obtained by calculating ALL fill by fill and then averaged over all fills in the 2005
run. Blue points are obtained by calculating ALL after merging the yield and luminosity over
all fills. Red error bars indicates the quadratic sum of the statistical error and the systematic
error from the background fluctuation represented as ∆ in Equation (A.70).
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∆P corr denotes the correlated error between PB and PY . For simplicity, we assume AL =
AL,B = AL,Y and rB = rY = 1

2 . Then ∆AL|pol can be approximated as;

∆AL|pol ∼ 1

2
AL

[

(

∆PB

PB

)2

+

(

∆PY

PY

)2

+ 2
(∆P corr)2

PBPY

]
1
2

= AL
∆(PBPY )

2PBPY
. (A.76)

Therefore, the uncertainty from the beam polarization behaves as the scale error for combined
AL.

A.15.2 Uncertainty from relative luminosity

The relative luminosity in the calculation of AL,B (RB) is not same as that of AL,Y (RY ).
However, RB and RY are calculated from the same source and their uncertainties are ap-
proximately fully correlated. RB and its error are evaluated as

RB =
L++ + L+−
L−+ + L−−

(A.77)

∆RB

RB
=

[

(∆L++)2 + (∆L+−)2

(L++ + L+−)2
+

(∆L−+)2 + (∆L−−)2

(L−+ + L−−)2

]
1
2

∼ 4

L2

√

(∆L++)2 + (∆L+−)2 + (∆L−+)2 + (∆L−−)2. (A.78)

LhBhY
indicates spin-dependent integrated luminosity and hB (hY ) is the helicity state of the

blue (yellow) beam. In the approximation, L++ = L+− = L−+ = L−− = 1
4L is applied. In

the same way, RY and its error are obtained to be

RY =
L++ + L−+

L+− + L−−
(A.79)

∆RY

RY
=

[

(∆L++)2 + (∆L−+)2

(L++ + L−+)2
+

(∆L+−)2 + (∆L−−)2

(L+− + L−−)2

] 1
2

∼ 4

L2

√

(∆L++)2 + (∆L+−)2 + (∆L−+)2 + (∆L−−)2. (A.80)

Hence, RB and RY are fully correlated.
In terms of the uncertainty of AL combined from AL,B and AL,Y , from Equation (3.11),

the uncertainties of the raw asymmetries from the relative luminosity,

∆ǫB|R.L. =
1

2

(

∆RB

RB

)

and ∆ǫY |R.L. =
1

2

(

∆RY

RY

)

, (A.81)

are fully correlated. The uncertainty of the combined AL is calculated from Equation (A.74)
as follows.

∆AL =

[

1

4

(

rB

PB

)2 (

∆RB

RB

)

+
1

4

(

rY

PY

)2 (

∆RY

RY

)

+
1

2

(

rB

PB

) (

rY

PY

)

(∆Rcorr)2

RBRY

]
1
2

∼ 1

4

[

1

PB
+

1

PY

] (

∆R

R

)

. (A.82)

∆Rcorr indicates the correlation term between RB and RY . Based on the discussion above,
∆RB

RB
= ∆RY

RY
= ∆Rcorr√

RBRY
≡ ∆R

R is used in the calculation. In addition, the approximation of

rB = rY = 1
2 is adopted.
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A.16 Summary of the systematic error for ATT and AL

The systematic uncertainties from each source are tabulated for ATT and AL in this section.
The label in the table indicates the source of the error, which is listed in Section 3.7.9. See
Section 3.3 about the error from the beam polarization.

pT C D E F G H I total
(GeV/c) (10−5) (10−5)

0.5 – 0.75 408 108 81 11 28 3258 0 3286
0.75 – 1.0 408 108 13 47 27 425 0 602
1.0 – 1.5 408 108 6 82 26 0 0 431
1.5 – 2.0 408 108 6 129 692 0 0 821
2.0 – 2.5 408 108 11 176 1188 0 0 1273
2.5 – 3.0 408 108 18 224 4325 0 0 4351
3.0 – 3.5 408 108 29 273 1589 0 0 1667
3.5 – 4.0 408 108 44 322 4759 4262 0 6411

Table A.3: The summary of the systematic errors for π0 ATT with MB sample. The unit for
the numbers is 10−5. The quadratic sum of the systematic errors is put in the last column
as the total systematic error. The scale uncertainty from the beam polarization of 10.7 % is
not included in the table.

pT C D E F G H I total
(GeV/c) (10−5) (10−5)

0.5 – 0.75 395 108 54 28 2128 0 0 2168
0.75 – 1.0 395 108 2 57 488 0 0 640
1.0 – 1.5 395 108 5 98 24 671 0 793
1.5 – 2.0 395 108 2 144 23 0 0 435
2.0 – 2.5 395 108 1 188 11 0 0 451
2.5 – 3.0 395 108 1 232 9 567 0 737
3.0 – 3.5 395 108 2 277 58 0 0 498
3.5 – 4.0 395 108 3 325 15 0 0 523
4.0 – 5.0 395 108 7 391 46 0 0 568
5.0 – 6.0 395 108 15 495 178 1726 0 1850
6.0 – 7.0 395 108 27 600 111 5211 0 5263
7.0 – 9.0 395 108 74 739 27 0 0 849

Table A.4: The summary of the systematic errors for π0 ATT with ERT sample. The unit for
the numbers is 10−5. The quadratic sum of the systematic errors is put in the last column
as the total systematic error. The scale uncertainty from the beam polarization of 10.7 % is
not included in the table.
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pT B C D E F G H I total
(GeV/c) (10−5) (10−5)

0.5 – 0.75 1 20 5 4 1 6 49 66 85
0.75 – 1.0 0 20 5 1 2 2 0 41 46
1.0 – 1.5 0 20 5 0 4 0 0 23 31
1.5 – 2.0 1 20 5 0 6 2 0 10 24
2.0 – 2.5 1 20 5 0 9 0 125 0 127
2.5 – 3.0 1 20 5 0 11 3 0 0 24
3.0 – 3.5 7 20 5 0 13 26 40 0 54
3.5 – 4.0 11 20 5 0 16 23 0 0 36

Table A.5: The summary of the systematic errors for π0 AL with MB sample. The unit for
the numbers is 10−5. The quadratic sum of the systematic errors is put in the last column
as the total systematic error. The scale uncertainty from the beam polarization of 4.7 % is
not included in the table.

pT B C D E F G H I total
(GeV/c) (10−5) (10−5)

0.5 – 0.75 2 19 5 1 1 12 0 0 23
0.75 – 1.0 2 19 5 0 3 12 0 0 23
1.0 – 1.5 0 19 5 0 5 1 0 0 20
1.5 – 2.0 0 19 5 0 7 0 14 0 25
2.0 – 2.5 1 19 5 0 9 0 0 0 22
2.5 – 3.0 0 19 5 0 11 0 0 0 23
3.0 – 3.5 0 19 5 0 14 0 23 0 33
3.5 – 4.0 0 19 5 0 16 1 0 0 25
4.0 – 5.0 2 19 5 0 19 1 82 0 86
5.0 – 6.0 1 19 5 0 24 6 48 0 57
6.0 – 7.0 4 19 5 0 29 52 0 0 63
7.0 – 9.0 0 19 5 1 36 19 0 0 45

Table A.6: The summary of the systematic errors for π0 AL with ERT sample. The unit for
the numbers is 10−5. The quadratic sum of the systematic errors is put in the last column
as the total systematic error. The scale uncertainty from the beam polarization of 4.7 % is
not included in the table.
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